On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 479-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we mainly investigate on the finite order transcendental entire solutions of two Fermat types delay-differential and one Fermat type $c$-shift equations, as these types were not considered earlier. Our results improve those of [13] in some sense. In addition, we also extend some recent results obtained in [18]. A handful number of examples have been provided by us to justify our certain assertion as and when required.
Keywords: delay-differential equations, shift equation, entire and meromorphic solutions, finite order, Nevanlinna theory.
Mots-clés : Fermat type equation
@article{SEMR_2021_18_1_a46,
     author = {A. Banerjee and T. Biswas},
     title = {On the transcendental solutions of {Fermat} type delay-differential and $c$-shift equations with some analogous results},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {479--494},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/}
}
TY  - JOUR
AU  - A. Banerjee
AU  - T. Biswas
TI  - On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 479
EP  - 494
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/
LA  - en
ID  - SEMR_2021_18_1_a46
ER  - 
%0 Journal Article
%A A. Banerjee
%A T. Biswas
%T On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 479-494
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/
%G en
%F SEMR_2021_18_1_a46
A. Banerjee; T. Biswas. On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 479-494. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/

[1] M.F. Chen, Z.S. Gao, “Entire solutions of differential-difference equation and Fermat type $q$-difference differential equations”, Commun. Korean Math. Soc., 30:4 (2015), 447–456 | DOI | MR | Zbl

[2] Y.-M. Chiang, S.-J. Feng, “On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane”, Ramanujan J., 16:1 (2008), 105–129 | DOI | MR | Zbl

[3] F. Gross, “On the equation $f^n (z)+ g^n(z)= 1$”, Bull. Am. Math. Soc., 72:1(1) (1966), 86–88 | DOI | MR | Zbl

[4] F. Gross, “On the functional equation $f^n (z)+ g^n(z)= h^n(z)$”, Amer. Math. Mon., 73 (1966), 1093–1096 | DOI | MR | Zbl

[5] R.G. Halburd, R.J. Korhonen, “Nevanlinna theory for the difference operator”, Ann. Acad. Sci. Fenn. Math., 31:2 (2006), 463–478 | MR | Zbl

[6] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964 | MR | Zbl

[7] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, J.L. Zhang, “Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity”, J. Math. Anal. Appl., 355:1 (2009), 352–363 | DOI | MR | Zbl

[8] I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1992 | MR | Zbl

[9] B.Q. Li, “On certain non-linear differential equations in complex domains”, Arch. Math., 91:4 (2008), 344–353 | DOI | MR | Zbl

[10] K. Liu, “Meromorphic functions sharing a set with applications to difference equations”, J. Math. Anal. Appl., 359:1 (2009), 384–393 | DOI | MR | Zbl

[11] K. Liu, T.-B. Cao, “Entire solutions of Fermat type $q$-difference differential equations”, Electron. J. Differ. Equ., 2013, 59 | DOI | MR | Zbl

[12] K. Liu, T.-B. Cao, H.Z. Cao, “Entire solutions of Fermat type differential-difference equations”, Arch. Math., 99:2 (2012), 147–155 | DOI | MR | Zbl

[13] K. Liu, X.J. Dong, “Fermat type differential and difference equations”, Electron. J. Diff. Equ., 2015, 159 | MR | Zbl

[14] K. Liu, L. Yang, “On entire solutions of some differential-difference equations”, Comput. Methods Funct. Theory, 13:3 (2013), 433–447 | DOI | MR | Zbl

[15] K. Liu, L.Z. Yang, “A note on meromorphic solutions of Fermat types equations”, An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.), 62:2(1) (2016), 317–325 | MR | Zbl

[16] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Viuars, Paris, 1927 | MR | Zbl

[17] X. Qi, “Value distribution and uniqueness of difference polynomials and entire solutions of difference equations”, Ann. Pol. Math., 102:2 (2011), 129–142 | DOI | MR | Zbl

[18] X. Qi, Y. Liu, L. Yang, “On meromorphic solutions of certain type of difference equations”, Bull. Iran. Math. Soc., 41:1 (2015), 281–289 | MR | Zbl

[19] J.F. Tang, L.W. Liao, “The transcendental meromorphic solutions of a certain type of non-linear differential equations”, J. Math. Anal. Appl., 334:1 (2007), 517–527 | DOI | MR | Zbl

[20] H. Wang, H.Y. Xu, J. Tu, “The existence and forms of solutions for some Fermat-type differential-difference equations”, AIMS Math., 5:1 (2020), 685–700 | DOI | MR

[21] C.C. Yang, “A generalization of a theorem of P. Montel on entire functions”, Proc. Am. Math. Soc., 26 (1970), 332–334 | DOI | MR | Zbl

[22] C.-C. Yang, P. Li, “On the transcendental solutions of a certain type of non-linear differential equations”, Arch. Math., 82:5 (2004), 442–448 | DOI | MR | Zbl

[23] C.-C. Yang, H.-X. Yi, Uniqueness theory of meromorphic functions, Science Press and Kluwer Acad. Publ., Beijing, 2003 | MR | Zbl

[24] X. Zhang, L.W. Liao, “On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions”, Sci. China, Math., 56:10 (2013), 2025–2034 | DOI | MR | Zbl