Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a46, author = {A. Banerjee and T. Biswas}, title = {On the transcendental solutions of {Fermat} type delay-differential and $c$-shift equations with some analogous results}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {479--494}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/} }
TY - JOUR AU - A. Banerjee AU - T. Biswas TI - On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 479 EP - 494 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/ LA - en ID - SEMR_2021_18_1_a46 ER -
%0 Journal Article %A A. Banerjee %A T. Biswas %T On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 479-494 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/ %G en %F SEMR_2021_18_1_a46
A. Banerjee; T. Biswas. On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 479-494. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a46/
[1] M.F. Chen, Z.S. Gao, “Entire solutions of differential-difference equation and Fermat type $q$-difference differential equations”, Commun. Korean Math. Soc., 30:4 (2015), 447–456 | DOI | MR | Zbl
[2] Y.-M. Chiang, S.-J. Feng, “On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane”, Ramanujan J., 16:1 (2008), 105–129 | DOI | MR | Zbl
[3] F. Gross, “On the equation $f^n (z)+ g^n(z)= 1$”, Bull. Am. Math. Soc., 72:1(1) (1966), 86–88 | DOI | MR | Zbl
[4] F. Gross, “On the functional equation $f^n (z)+ g^n(z)= h^n(z)$”, Amer. Math. Mon., 73 (1966), 1093–1096 | DOI | MR | Zbl
[5] R.G. Halburd, R.J. Korhonen, “Nevanlinna theory for the difference operator”, Ann. Acad. Sci. Fenn. Math., 31:2 (2006), 463–478 | MR | Zbl
[6] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964 | MR | Zbl
[7] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, J.L. Zhang, “Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity”, J. Math. Anal. Appl., 355:1 (2009), 352–363 | DOI | MR | Zbl
[8] I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1992 | MR | Zbl
[9] B.Q. Li, “On certain non-linear differential equations in complex domains”, Arch. Math., 91:4 (2008), 344–353 | DOI | MR | Zbl
[10] K. Liu, “Meromorphic functions sharing a set with applications to difference equations”, J. Math. Anal. Appl., 359:1 (2009), 384–393 | DOI | MR | Zbl
[11] K. Liu, T.-B. Cao, “Entire solutions of Fermat type $q$-difference differential equations”, Electron. J. Differ. Equ., 2013, 59 | DOI | MR | Zbl
[12] K. Liu, T.-B. Cao, H.Z. Cao, “Entire solutions of Fermat type differential-difference equations”, Arch. Math., 99:2 (2012), 147–155 | DOI | MR | Zbl
[13] K. Liu, X.J. Dong, “Fermat type differential and difference equations”, Electron. J. Diff. Equ., 2015, 159 | MR | Zbl
[14] K. Liu, L. Yang, “On entire solutions of some differential-difference equations”, Comput. Methods Funct. Theory, 13:3 (2013), 433–447 | DOI | MR | Zbl
[15] K. Liu, L.Z. Yang, “A note on meromorphic solutions of Fermat types equations”, An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.), 62:2(1) (2016), 317–325 | MR | Zbl
[16] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Viuars, Paris, 1927 | MR | Zbl
[17] X. Qi, “Value distribution and uniqueness of difference polynomials and entire solutions of difference equations”, Ann. Pol. Math., 102:2 (2011), 129–142 | DOI | MR | Zbl
[18] X. Qi, Y. Liu, L. Yang, “On meromorphic solutions of certain type of difference equations”, Bull. Iran. Math. Soc., 41:1 (2015), 281–289 | MR | Zbl
[19] J.F. Tang, L.W. Liao, “The transcendental meromorphic solutions of a certain type of non-linear differential equations”, J. Math. Anal. Appl., 334:1 (2007), 517–527 | DOI | MR | Zbl
[20] H. Wang, H.Y. Xu, J. Tu, “The existence and forms of solutions for some Fermat-type differential-difference equations”, AIMS Math., 5:1 (2020), 685–700 | DOI | MR
[21] C.C. Yang, “A generalization of a theorem of P. Montel on entire functions”, Proc. Am. Math. Soc., 26 (1970), 332–334 | DOI | MR | Zbl
[22] C.-C. Yang, P. Li, “On the transcendental solutions of a certain type of non-linear differential equations”, Arch. Math., 82:5 (2004), 442–448 | DOI | MR | Zbl
[23] C.-C. Yang, H.-X. Yi, Uniqueness theory of meromorphic functions, Science Press and Kluwer Acad. Publ., Beijing, 2003 | MR | Zbl
[24] X. Zhang, L.W. Liao, “On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions”, Sci. China, Math., 56:10 (2013), 2025–2034 | DOI | MR | Zbl