Numerical solution of the solute transfer problem in porous elastic clay shale
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 694-702.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the solution to the problem of the transport of solvent and solute in a chemically inert elastically deformable rock, for which only changes in stress and pore pressure are taken into account. The chemistry of the saturating pore fluid has no direct effect on the rock deformation. Chemical effects are taken into account by changing the pore pressure and deformation of rocks in the transport equations. The numerical algorithm for solving the problem under consideration is based on a combination of the Laguerre integral transform and the finite difference method. The paper presents the results of numerical calculations for the model of the transport of a solute through a semi-permeable shale.
Keywords: porous medium, saturated fluid, elastic parameters, stress tensor, partial density, permeability, chemical potential.
@article{SEMR_2021_18_1_a36,
     author = {B. Kh. Imomnazarov and A. A. Mikhailov and I. Q. Khaydarov and A. E. Kholmurodov},
     title = {Numerical solution of the solute transfer problem in porous elastic clay shale},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {694--702},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a36/}
}
TY  - JOUR
AU  - B. Kh. Imomnazarov
AU  - A. A. Mikhailov
AU  - I. Q. Khaydarov
AU  - A. E. Kholmurodov
TI  - Numerical solution of the solute transfer problem in porous elastic clay shale
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 694
EP  - 702
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a36/
LA  - ru
ID  - SEMR_2021_18_1_a36
ER  - 
%0 Journal Article
%A B. Kh. Imomnazarov
%A A. A. Mikhailov
%A I. Q. Khaydarov
%A A. E. Kholmurodov
%T Numerical solution of the solute transfer problem in porous elastic clay shale
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 694-702
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a36/
%G ru
%F SEMR_2021_18_1_a36
B. Kh. Imomnazarov; A. A. Mikhailov; I. Q. Khaydarov; A. E. Kholmurodov. Numerical solution of the solute transfer problem in porous elastic clay shale. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 694-702. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a36/

[1] J.D. Sherwood, “A model of hindered solute transport in a poroelastic shale”, Proc. R. Soc. Lond., Ser. A, 445:1925 (1994), 679–692 | DOI | Zbl

[2] H. Roshan, S. Rahman, “A fully coupled chemo-poroelastic analysis of pore pressure and stress distribution around a wellbore in water active rocks”, Rock Mechanics and Rock Engineering, 44 (2011), 199–210 | DOI

[3] S. Rafieepour, S. Zamiran, M. Ostadhassan, “A cost-effective chemo-thermo-poroelastic wellbore stability model for mud weight design during drilling through shale formations”, Journal of Rock Mechanics and Geotechnical Engineering, 12:4 (2020), 768–779 | DOI

[4] J.D. Sherwood, “Biot poroelasticity of a chemically active shale”, Proc. R. Soc. Lond., Ser. A, 440:1909 (1993), 365–377 | DOI | Zbl

[5] I. Haydarov, B. Imomnazarov, “On one model of solute transport in poroelastic shale”, Bull. Nov. Comp. Center, Math. Model. in Geoph., 21 (2019), 1–9

[6] J.R. Rice, M.P. Clearly, “Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents”, Rev. Geophys. Space Phys., 14:2 (1976), 227–241 | DOI

[7] Kh.Kh. Imomnazarov, “Concentrated force in a porous half-space”, Bull. Novosib. Comput. Cent. Ser. Math. Model. Geophys., 1998:4 (1998), 75–77 | Zbl

[8] E.V. Grachev, N.M. Zhabborov, Kh.Kh. Imomnazarov, “A Concentrated force in an elastic porous half-space”, Doklady Physics, 48:7 (2003), 376–378 | DOI | MR

[9] E. Grachev, Kh. Imomnazarov, N. Zhabborov, “One nonclassical problem for the statics equations of elastic-deformed porous media in a half-plane”, Appl. Math. Lett., 17:1 (2004), 31–34 | DOI | MR | Zbl

[10] Kh.Kh. Imomnazarov, N.M. Zhabborov, Some initial boundary value problems of the mechanics of two-velocity media, Izd-vo NUUz im. Mirzo Ulugbek, 2012

[11] A.M. Blokhin, V.N. Dorovsky, Mathematical modelling in the theory of multivelocity continuum, Nova Science, Commack, 1995 | MR

[12] Kh.Kh. Imomnazarov, “Some remarks on the Biot equations”, Dokl. RAS, 373:4 (2000), 536–537 | Zbl

[13] Kh.Kh. Imomnazarov, “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl

[14] G.V. Konyukh, B.G. Mikhailenko, “Application of the Laguerre integral transforms for solving dynamic seismic problems”, Bull. Novosib. Comput. Cent., Ser. Math. Model. Geophys., 1998:4 (1998), 79–91 | Zbl

[15] B.G. Mikhailenko, A.A. Mikhailov, G.V. Reshetova, “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure Apll. geophys., 160 (2003), 1207–1224 | DOI

[16] B.G. Mikhailenko, A.A. Mikhailov, G.V. Reshetova, “Numerical viscoelastic modeling by the spectral Laguerre method”, Geophysical Prospecting, 51:1 (2003), 37–48 | DOI | MR