About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 548-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal boundary value problem for a third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The obtained a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
Keywords: boundary value problem, a nonlocal boundary value problem, a third-order pseudo-parabolic equation, difference schemes, stability and convergence of difference schemes, a priori estimates, energy inequality method.
Mots-clés : a nonlocal condition
@article{SEMR_2021_18_1_a30,
     author = {A. K. Bazzaev and D. K. Gutnova},
     title = {About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {548--560},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - D. K. Gutnova
TI  - About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 548
EP  - 560
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/
LA  - en
ID  - SEMR_2021_18_1_a30
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A D. K. Gutnova
%T About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 548-560
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/
%G en
%F SEMR_2021_18_1_a30
A. K. Bazzaev; D. K. Gutnova. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 548-560. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/

[1] E.S. Dzekcer, “Equation of motion of underground water with a free surface in multilayer media”, Sov. Phys., Dokl., 20 (1975), 24–26 | Zbl

[2] L.I. Rubinshtein, “On heat propagation in heterogeneous media”, Izv. Akad. Nauk SSSR, Ser. Geogr., 12:1 (1948), 27–45 | MR

[3] T.W. Ting, “A cooling process according to two-temperature theory of heat conduction”, J. Math. Anal. Appl., 45:1 (1974), 23–31 | DOI | MR | Zbl

[4] M. Hallaire, L'eau et la production vegetable, v. 9, Inst. National de la Recherche Agronomique, 1964

[5] A.F. Chudnovskii, Thermal physics of soils, Nauka, M., 1976

[6] L.I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR | Zbl

[7] A.F. Chudnovskii, “Nekotorye korrektivy v postanovke i reshenii zadach teplo i vlagoperenosa v pochve”, Sb. trudov po agrofizike, 1969, 41–54

[8] A.V. Bitsadze, A.A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10 (1969), 398–400 | MR | Zbl

[9] N.I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | MR | Zbl

[10] N.I. Ionkin, “Uniform convergence of the difference scheme for one nonstationary nonlocal boundary-value problem”, Comput. Math. Model., 2:3 (1991), 223–228 | DOI | MR | Zbl

[11] V.A. Il'in, E.I. Moiseev, “A nonlocal boundary value problem for the Sturm-Liouville operator in the differential and difference treatments”, Sov. Math., Dokl., 34 (1987), 507–511 | Zbl

[12] N.I. Ionkin, E.I. Moiseev, “A problem for a heat equation with two-point boundary conditions”, Differ. Uravn., 15:7 (1979), 1284–1295 | MR | Zbl

[13] D.G. Gordeziani, On the methods of solution for one class of non-local boundary value problems, Izdatel'stvo Tbilisskogo Universiteta, Tbilisi, 1981 | MR | Zbl

[14] A.M. Nakhushev, “A nonlocal problem and the Goursat problem for a loaded equation of hyperbolic type, and their applications to the prediction of ground moisture”, Sov. Math., Dokl., 19 (1978), 1243–1247 | MR | Zbl

[15] A.P. Soldatov, M. Kh. Shkhanukov, “Boundary value problems with general nonlocal Samarskij condition for pseudoparabolic equations of higher order”, Sov. Math., Dokl., 36:3 (1988), 507–511 | MR | Zbl

[16] A.K. Bazzaev, D.K. Gutnova, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for parabolic equation with a nonlocal condition”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1048–1057 | Zbl

[17] M. Kh. Beshtokov, “Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients”, Comput. Math. Math. Phys., 56:10 (2016), 1763–1777 | DOI | MR | Zbl

[18] M. Kh. Beshtokov, “Differential and difference boundary value problem for loaded third-order pseudo-parabolic differential equations and difference methods for their numerical solution”, Comput. Math. Math. Phys., 57:12 (2017), 1973–1993 | DOI | MR | Zbl

[19] M. Kh. Beshtokov, V.Z. Kanchukoyev, F.A. Erzhibova, “A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind”, Vladikavkaz. Mat. Zh., 19:4 (2017), 13–26 | MR | Zbl

[20] M. Kh. Beshtokov, “Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013:4(33) (2013), 15–24 | DOI | MR | Zbl

[21] M. Kh. Beshtokov, “Finite difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation”, Differ. Equ., 49:9 (2013), 1134–1141 | DOI | MR | Zbl

[22] M. KH. Beshtokov, “A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation”, Comput. Math. Math. Phys., 54:9 (2014), 1441–1458 | DOI | MR | Zbl

[23] A.K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions”, Comput. Math. Math. Phys., 50:7 (2010), 1141–1149 | DOI | MR | Zbl

[24] A.K. Bazzaev, “The third boundary problem for general parabolic differential equation of fractional order in multidimensional field”, Vestn. VGU, Ser. Fiz. Mat., 2010:2 (2010), 5–14 | Zbl

[25] A.K. Bazzaev, A.V. Mambetova, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1656–1665 | MR | Zbl

[26] A.K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions”, Comput. Math. Math. Phys., 50:7 (2010), 1141–1149 | DOI | MR | Zbl

[27] D.K. Faddeev, V.N. Faddeeva, Numerical methods of linear algebra, Fizmatgiz, M., 1960 | MR | Zbl

[28] O.A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-Verlag, New York etc, 1985 | MR | Zbl

[29] A.A. Samarskii, The Theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl

[30] A.A. Samarskii, A.V. Gulin, Stability of finite difference schemes, Nauka, M., 1973 | MR | Zbl