Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_1_a30, author = {A. K. Bazzaev and D. K. Gutnova}, title = {About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {548--560}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/} }
TY - JOUR AU - A. K. Bazzaev AU - D. K. Gutnova TI - About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 548 EP - 560 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/ LA - en ID - SEMR_2021_18_1_a30 ER -
%0 Journal Article %A A. K. Bazzaev %A D. K. Gutnova %T About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 548-560 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/ %G en %F SEMR_2021_18_1_a30
A. K. Bazzaev; D. K. Gutnova. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 548-560. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a30/