On uniqueness and stability of a cycle in one gene network
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 464-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe necessary and suffcient conditions for uniqueness and stability of a cycle in an invariant domain of phase portrait of one Glass-Pasternack type block-linear dynamical system that simulates functioning of one natural gene network. Existence of such a cycle, geometry and combinatorics of phase portraits of similar systems were studied in our previous publications.
Keywords: circular gene network, fixed points, piecewise linear dynamical systems, Poincaré map.
Mots-clés : cycles, phase portraits, invariant domains
@article{SEMR_2021_18_1_a29,
     author = {V. P. Golubyatnikov and L. S. Minushkina},
     title = {On uniqueness and stability of a cycle in one gene network},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {464--473},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a29/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - L. S. Minushkina
TI  - On uniqueness and stability of a cycle in one gene network
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 464
EP  - 473
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a29/
LA  - en
ID  - SEMR_2021_18_1_a29
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A L. S. Minushkina
%T On uniqueness and stability of a cycle in one gene network
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 464-473
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a29/
%G en
%F SEMR_2021_18_1_a29
V. P. Golubyatnikov; L. S. Minushkina. On uniqueness and stability of a cycle in one gene network. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 464-473. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a29/

[1] L. Glass, J.S. Pasternack, “Stable oscillations in mathematcal models of biological control systems”, J. Math. Bio., 6 (1978), 207–223 | DOI | MR | Zbl

[2] N.B. Ayupova, V.P. Golubyatnikov, “On two classes of nonlinear dynamical systems: the four-dimensional case”, Sib. Math. J., 56:2 (2015), 231–236 | DOI | MR | Zbl

[3] S. Hastings, J. Tyson, D. Webster, “Existence of periodic solutions for negative feedback cellular control systems”, J. Differ. Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[4] T. Gedeon, Cyclic feedback systems, Mem. AMS, 134, MEMO/0637, 1998 | MR | Zbl

[5] V.P. Golubyatnikov, V.V. Ivanov, L.S. Minushkina, “On existence of a cycle in one asymmetric gene network model”, Sib. Zh. Chist. Prikl. Mat., 18:3 (2018), 27–35 | DOI | MR | Zbl

[6] V.P. Golubyatnikov, L.S. Minushkina, “Monotonicity of the Poincaré mapping in some models of circular gene networks”, J. Appl. Ind. Math., 13:3 (2019), 472–479 | DOI | MR | Zbl

[7] T. Gedeon, M. Pernarowski, A. Wilander, “Cyclic feedback systems with quorum sensing coupling”, Bull. Math. Biol., 78:6 (2016), 1291–1317 | DOI | MR | Zbl

[8] S. Yuan, D. Wu, G. Lan, H. Wang, “Noise-induced transitions in a nonsmooth producer-grazer model with stoichiometric constraints”, Bull. Math. Biol., 82:5 (2020), 55 | DOI | MR | Zbl

[9] T.A. Bukharina, A.A. Akinshin, V.P. Golubyatnikov, D.P. Furman, “Numerical models of the central regulatory circuit of the morphogenesis system of Drosophila”, J. Appl. Ind. Math., 14:2 (2020), 249–255 | DOI | MR

[10] V.A. Likhoshvai, V.P. Golubyatnikov, T.M. Khlebodarova, “Limit cycles in models of circular gene networks regulated by negative feedbacks loops”, BMC Bioinformatics, 21 (2020), 255 | DOI

[11] Yu. A. Gaidov, V.P. Golubyatnikov, “On cycles and other geometric phenomena in phase portraits of some nonlinear dynamical systems”, Geometry and its applications, Selected papers based on the presentations at the 2nd international workshop on geometry and symbolic computation (Haifa, Israel, May 15-18, 2013), Springer Proceedings in Mathematics Statistics, 72, eds. Rovenski Vladimir et al., 2014, 225–233 | DOI | MR | Zbl

[12] V.P. Golubyatnikov, A.E. Kalenykh, “Structure of phase portraits of nonlinear dynamical systems”, J. Math. Sci., New York, 215:4 (2016), 475–483 | DOI | MR | Zbl

[13] A. Yu. Kolesov, N. Kh. Rozov, V.A. Sadovnichii, “Periodic solutions of traveling-wave type in circular gene networks”, Izv. Math., 80:3 (2016), 523–548 | DOI | MR | Zbl

[14] A.A. Akinshin, V.P. Golubyatnikov, “Geometric characteristics of cycles in some symmetric dynamical systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 3–12 | Zbl

[15] A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of oscillations, Pergamon Press, Oxford, 1966 | MR | Zbl

[16] L. Glass, “Combinatorial and topological methods in nonlinear chemical kinetics”, J. Chem. Phys., 63 (1975), 1325–1335 | DOI

[17] R. Wilds, L. Glass, “Contrasting methods for symbolic analysis of biological regulatory networks”, Phys. Rev. E: Stat. Nonlin. Soft. Matter Phys., 80 (2009), 062902 | DOI

[18] A. Berbache, “Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces”, Sib. Électron. Math. Izv., 17 (2020), 1488–1515 | DOI | MR | Zbl

[19] J. Llibre, D.D. Novaes, M.A. Teixeira, “Maximum number of limit cycles for certain piecewise linear dynamical systems”, Nonlinear Dyn., 82:3 (2015), 1159–1175 | DOI | MR | Zbl

[20] N.B. Ayupova, V.P. Golubyatnikov, “Structure of the phase portrait of a piecewise-linear dynamical system”, Journal of Applied and Industrial Mathematics, 13:4 (2019), 606–611 | DOI | MR

[21] N.E. Kirillova, L.S. Minushkina, “On discretization of phase portraits of circular dynamical systems”, Izvestiya of Altai State University. Mathematics and Mechanics, 2019:4(108) (2019), 82–85 | DOI

[22] Yu.A. Gaidov, V.P. Golubyatnikov, A.G. Kleshchev, E.P. Volokitin, “Modeling of asymmetric gene networks functioning with different types of regulation”, Biophysics, 51 (2006), 61 | DOI

[23] J. Mallet-Paret, H. Smith, “The Poincaré-Bendixson theorem for monotone cyclic feedback systems”, J. Dyn. Differ. Equations, 2:4 (1990), 367–421 | DOI | MR | Zbl

[24] V.P. Golubyatnikov, V.V. Ivanov, “Uniqueness and stability of a cycle in 3-dimensional block-linear circular gene network models”, Sib. Zh. Chist. Prikl. Mat., 18:4 (2018), 19–28 | DOI | MR | Zbl

[25] V.P. Golubyatnikov, V.V. Ivanov, “Cycles in the odd-dimensional models of circular gene networks”, J. Appl. Ind. Math., 12:4 (2018), 648–657 | DOI | MR | Zbl

[26] F.R. Gantmacher, The theory of matrices, Chelsea Publishing Co., New York, 1959 | MR