Initial-boundary value problems for degenerate hyperbolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 43-53

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study solvability in Sobolev spaces initial–boundary value problems for differential equations $$u_{tt}-\varphi(t)Au+c(x,t)u=f(x,t)$$ in which $A$ is an elliptic operator acting in the spatial variables $x_1$,\ldots,$x_n$ and $\varphi(t)$ is a non-negative function on the segment $[0,T]$. Existence theorems of regular solutions are proven. Some generalizations of the results are also described.
Keywords: hyperbolic equations, degeneration, initial-boundary value problems, regular solutions
Mots-clés : existence.
@article{SEMR_2021_18_1_a22,
     author = {A. I. Kozhanov},
     title = {Initial-boundary value problems for degenerate hyperbolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a22/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Initial-boundary value problems for degenerate hyperbolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 43
EP  - 53
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a22/
LA  - ru
ID  - SEMR_2021_18_1_a22
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Initial-boundary value problems for degenerate hyperbolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 43-53
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a22/
%G ru
%F SEMR_2021_18_1_a22
A. I. Kozhanov. Initial-boundary value problems for degenerate hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a22/