Kolmogorov differential systems with prescribed algebraic limit cycles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given algebraic curve, we exhibit Kolmogorov differential systems, and we show that these systems admit precisely the bounded components of the curve as hyperbolic limit cycles if certain conditions on the parameters of the system are satisfied.
Keywords: Sixteenth problem of Hilbert, planar differential system, invariant curve, periodic solution, hyperbolic limit cycle.
@article{SEMR_2021_18_1_a21,
     author = {R. Chouader and S. Benyoucef and A. Bendjeddou},
     title = {Kolmogorov differential systems with prescribed algebraic limit cycles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a21/}
}
TY  - JOUR
AU  - R. Chouader
AU  - S. Benyoucef
AU  - A. Bendjeddou
TI  - Kolmogorov differential systems with prescribed algebraic limit cycles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1
EP  - 8
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a21/
LA  - en
ID  - SEMR_2021_18_1_a21
ER  - 
%0 Journal Article
%A R. Chouader
%A S. Benyoucef
%A A. Bendjeddou
%T Kolmogorov differential systems with prescribed algebraic limit cycles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1-8
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a21/
%G en
%F SEMR_2021_18_1_a21
R. Chouader; S. Benyoucef; A. Bendjeddou. Kolmogorov differential systems with prescribed algebraic limit cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a21/

[1] A. Bendjeddou, R. Cheurfa, “On the exact limit cycle for some class of planar differential systems”, Nonlinear Differ. Equ. Appl., 14:5-6 (2007), 491–498 | Zbl

[2] A. Bendjeddou, A Berbache, R. Cherfa, “A class of Kolmogorov system with exact algebraic limit cycle”, Int. J. Differ. Equ. Appl., 14:3 (2015), 159–165 | Zbl

[3] Salah Benyoucef, “Polynomial differential systems with hyperbolic algebraic limit cycles”, Electron. J. Qual. Theory Differ. Equ., 2020, 34, 1–7 | Zbl

[4] Salah Benyoucef, Ahmed Bendjeddou, “Kolmogorov system with explicit hyperbolic limit cycle”, J. Siberian. Fed. Uni. Maths Phys., 10:2 (2017), 216–222

[5] R. Boukoucha, A. Bendjeddou, “On the dynamics of a class of rational Kolmogorov systems”, J. Nonlinear Math. Phys., 23:1 (2016), 21–27 | Zbl

[6] C. Christopher, “Polynomial vector fields with prescribed algebraic limit cycles”, Geom. Dedicata, 88:1-3 (201), 255–258 | Zbl

[7] F. Dumortier, J. Llibre, J. Artés, Qualitative theory of planar differential systems, Universitex, Springer, Berlin, 2006 | Zbl

[8] H. Giacomini, M. Grau, “On the stability of limit cycles for planar differential systems”, J. Diff. Equ., 213:2 (2005), 368–388 | Zbl

[9] H. Giacomini, J. Llibre, M. Viano, “On the nonexistence, existence and uniqueness of limit cycles”, Nonlinearity, 9:2 (1996), 501–516 | Zbl

[10] X.C. Huang, Lemin Zhu, “Limit cycles in a general Kolmogorov model”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 60:8 (2005), 1393–1414 | Zbl

[11] J. Llibre, R. Ramirez, Inverse problems in ordinary differentials equation and applications, Progress in Mathematics, 313, Springer, Basel, 2016 | Zbl

[12] J. Llibre, T. Salhi, “On the dynamics of a class of Kolmogorov systems”, App. Math. Comput., 225 (2013), 242–245 | Zbl

[13] Jaume Llibre, Xiang Zhang, “A survey on algebraic and explicit non-algebraic limit cycles in planar differential systems”, Expositiones Mathematicae, 39:1 (2020), 48–61 | DOI

[14] N.G. Lloyd, J.M. Pearson, E Sáez, I. Szántó, “Limit cycles of a cubic Kolmogorov system”, Appl. Math. Lett., 9:1 (1996), 15–18 | Zbl

[15] N.G. Lloyd, J.M. Pearson, E. Sáez, I. Szántó, “A cubic Kolmogorov system with six limit cycles”, Comput. Math. Appl., 44:3-4 (2002), 445–455 | Zbl

[16] R.M. May, “Limit cycles in predator-prey communities”, Science, 177 (1972), 900–902

[17] L. Perko, Differential equations and dynamical systems, Texts in applied mathematics, 7, Third edition, Springer-Verlag, New York, 2006

[18] X. Zhang, “The 16th Hilbert problem on algebraic limit cycles”, J. Differ. Equations, 251:7 (2011), 1778–1789 | Zbl