Local $\tau$-density and local weak $\tau$-density in topological spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 474-478
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers locally compact, metrizable, and linearly ordered spaces. In these spaces, the concepts of local $\tau$-density and local weak $\tau$-density are considered. It is shown that in locally compact, metrizable, and linearly ordered spaces the concepts of local $\tau$-density and local weak $\tau$-density coincide. It is proved that a locally weakly $\tau$-dense subset of a compact set with the first axiom of countability is locally $\tau$-dense.
Keywords:
local $\tau$-density, local weak $\tau$-density, locally compact space, metrizable space, linearly ordered space.
@article{SEMR_2021_18_1_a12,
author = {T. K. Yuldashev and F. G. Mukhamadiev},
title = {Local $\tau$-density and local weak $\tau$-density in topological spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {474--478},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/}
}
TY - JOUR AU - T. K. Yuldashev AU - F. G. Mukhamadiev TI - Local $\tau$-density and local weak $\tau$-density in topological spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 474 EP - 478 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/ LA - en ID - SEMR_2021_18_1_a12 ER -
%0 Journal Article %A T. K. Yuldashev %A F. G. Mukhamadiev %T Local $\tau$-density and local weak $\tau$-density in topological spaces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 474-478 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/ %G en %F SEMR_2021_18_1_a12
T. K. Yuldashev; F. G. Mukhamadiev. Local $\tau$-density and local weak $\tau$-density in topological spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 474-478. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/