Local $\tau$-density and local weak $\tau$-density in topological spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 474-478

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers locally compact, metrizable, and linearly ordered spaces. In these spaces, the concepts of local $\tau$-density and local weak $\tau$-density are considered. It is shown that in locally compact, metrizable, and linearly ordered spaces the concepts of local $\tau$-density and local weak $\tau$-density coincide. It is proved that a locally weakly $\tau$-dense subset of a compact set with the first axiom of countability is locally $\tau$-dense.
Keywords: local $\tau$-density, local weak $\tau$-density, locally compact space, metrizable space, linearly ordered space.
@article{SEMR_2021_18_1_a12,
     author = {T. K. Yuldashev and F. G. Mukhamadiev},
     title = {Local $\tau$-density and local weak $\tau$-density in topological spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {474--478},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - F. G. Mukhamadiev
TI  - Local $\tau$-density and local weak $\tau$-density in topological spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 474
EP  - 478
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/
LA  - en
ID  - SEMR_2021_18_1_a12
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A F. G. Mukhamadiev
%T Local $\tau$-density and local weak $\tau$-density in topological spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 474-478
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/
%G en
%F SEMR_2021_18_1_a12
T. K. Yuldashev; F. G. Mukhamadiev. Local $\tau$-density and local weak $\tau$-density in topological spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 474-478. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a12/