On variety $\mathcal{N}$ of normal valued $m$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 54-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Recall that an $m$-group is a pair $(G,_{*}),$ where $G$ is an $\ell$-group and $_{*}$ is a decreasing order two automorphism of $G$. An $m$-group can be regarded as an algebraic system of signature $m$ and it is obvious that the $m$-groups form a variety in this signature. The set $M$ of varieties of all $m$-groups is a partially ordered set with respect to the set-theoretic inclusion. Moreover, $M$ is a lattice with respect to the naturally defined operations of intersection and union of varieties of $m$-groups. In this article we study the characteristics of a variety $\mathcal{N}$ of normal valued $m$-groups which is defined by the identity $ |x||y|\wedge |y|^{2}|x|^{2}=|x||y|.$ We will prove that $\mathcal{N}$ is an idempotent of $M$ and $\mathcal{N}=\bigvee\limits_{n \in \mathbb{N}}\mathcal{A}^{n},$ where $\mathcal{A}$ is the variety of all abelian $m$-groups.
Keywords:
variety, normal valued $m$-group.
Mots-clés : $m$-group
Mots-clés : $m$-group
@article{SEMR_2021_18_1_a0,
author = {A. V. Zenkov and O. V. Isaeva},
title = {On variety $\mathcal{N}$ of normal valued $m$-groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {54--60},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/}
}
TY - JOUR
AU - A. V. Zenkov
AU - O. V. Isaeva
TI - On variety $\mathcal{N}$ of normal valued $m$-groups
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2021
SP - 54
EP - 60
VL - 18
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/
LA - en
ID - SEMR_2021_18_1_a0
ER -
A. V. Zenkov; O. V. Isaeva. On variety $\mathcal{N}$ of normal valued $m$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 54-60. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/