On variety $\mathcal{N}$ of normal valued $m$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 54-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall that an $m$-group is a pair $(G,_{*}),$ where $G$ is an $\ell$-group and $_{*}$ is a decreasing order two automorphism of $G$. An $m$-group can be regarded as an algebraic system of signature $m$ and it is obvious that the $m$-groups form a variety in this signature. The set $M$ of varieties of all $m$-groups is a partially ordered set with respect to the set-theoretic inclusion. Moreover, $M$ is a lattice with respect to the naturally defined operations of intersection and union of varieties of $m$-groups. In this article we study the characteristics of a variety $\mathcal{N}$ of normal valued $m$-groups which is defined by the identity $ |x||y|\wedge |y|^{2}|x|^{2}=|x||y|.$ We will prove that $\mathcal{N}$ is an idempotent of $M$ and $\mathcal{N}=\bigvee\limits_{n \in \mathbb{N}}\mathcal{A}^{n},$ where $\mathcal{A}$ is the variety of all abelian $m$-groups.
Keywords: variety, normal valued $m$-group.
Mots-clés : $m$-group
@article{SEMR_2021_18_1_a0,
     author = {A. V. Zenkov and O. V. Isaeva},
     title = {On variety $\mathcal{N}$ of normal valued $m$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {54--60},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/}
}
TY  - JOUR
AU  - A. V. Zenkov
AU  - O. V. Isaeva
TI  - On variety $\mathcal{N}$ of normal valued $m$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 54
EP  - 60
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/
LA  - en
ID  - SEMR_2021_18_1_a0
ER  - 
%0 Journal Article
%A A. V. Zenkov
%A O. V. Isaeva
%T On variety $\mathcal{N}$ of normal valued $m$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 54-60
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/
%G en
%F SEMR_2021_18_1_a0
A. V. Zenkov; O. V. Isaeva. On variety $\mathcal{N}$ of normal valued $m$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 54-60. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a0/

[1] V.M. Kopytov, J. Rachunek, “The greatest proper variety of m-groups”, Algebra Logic, 42:5 (2003), 624–635 | Zbl

[2] A.G. Pinus(ed.), E.N. Porooshenko(ed.), S.V. Sudoplatov(ed.), Selected open questions on algebra and model theory presented by participants of Erlagol school conferences, Erlagol, NSTU, Novosibirsk, 2018

[3] A.G. Kurosh, Group theory, Nauka, M., 1967 | Zbl

[4] V.M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Math. Its Appl., (Dordrecht), 307, Kluwer Academic Publ., Dordrecht, 1994 | Zbl

[5] M. Giraudet, J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49:4 (1999), 743–766 | Zbl

[6] P.M. Cohn, Universal Algebra, Harper and Row Publishers, New York etc, 1965 | Zbl

[7] A.V. Zenkov, “On $m$-transitive groups”, Math. Notes, 94:1 (2013), 157–159 | Zbl

[8] A.V. Zenkov, O.V. Isaeva, “Two questions in the theory of $m$-groups”, Sib. Math. J., 55:6 (2014), 1042–1044 | Zbl

[9] A.V. Zenkov, O.V. Isaeva, “Generalized wreath products of $m$-groups”, Algebra Logic, 58:2 (2019), 115–122 | Zbl

[10] A.M.W. Glass, W. Ch. Holland, S.H. McCleary, “The structure of $\ell$-group varieties”, Algebra Univers., 10 (1980), 1–20 | Zbl