Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a96, author = {S. A. Sazhenkov and E. V. Sazhenkova}, title = {Homogenization of a {Submerged} {Two-Level} {Bristle} {Structure} for {Modeling} in {Biotechnology}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1359--1450}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/} }
TY - JOUR AU - S. A. Sazhenkov AU - E. V. Sazhenkova TI - Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1359 EP - 1450 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/ LA - ru ID - SEMR_2020_17_a96 ER -
%0 Journal Article %A S. A. Sazhenkov %A E. V. Sazhenkova %T Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1359-1450 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/ %G ru %F SEMR_2020_17_a96
S. A. Sazhenkov; E. V. Sazhenkova. Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1359-1450. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/
[1] G. Allaire, M. Briane, “Multiscale convergence and reiterated homogenization”, Proc. R. Soc. Edinb., 126A:2 (1996), 297–342 | DOI | MR | Zbl
[2] B. Bhushan, Y.C. Jung, M. Nosonovsky, “Lotus effect: surfaces with roughness-induced superhydrophobicity, self-cleaning and low adhesion”, Springer Handbook of Nanotechnology, Part F: Biomimetics, ed. B. Bhushan, Springer, Berlin–Heidelberg, 2010, 1437–1524 | DOI
[3] N. Botkin, M. Schlensog, M. Tewes, V. Turova, “A mathematical model of a biosensor”, 2001 International Conference on Modeling and Simulation of Microsystems, MSM 2001 (March 19–21, Hilton Island, SC, USA, Cambridge, MA, 2001), Computional Publ., 231–234
[4] D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999 | MR | Zbl
[5] H. Cohen, S.I. Rubinow, “Some mathematical topics in biology”, Proc. Symp. on System theory, Polytechnic Press, New York, 1965, 321–337
[6] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology, v. 5, Evolution problems I, Springer, Berlin, 2000 | MR | Zbl
[7] G.M. Fichtenholz, Course of Differential and Integral Calculus, v. 2, Nauka, M., 1969 (in Russian) | MR
[8] M.A. Genaev, A.V. Doroshkov, T.A. Pshenichnikova, N.I. Kolchanov, D.A. Afonnikov, “Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique”, Planta, 236 (2012), 1943–1954 | DOI
[9] P. Germain, Cours de mécanique des milieux continus, v. I, Théorie générale, Masson et Cie, Paris, 1973 | MR | Zbl
[10] R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: part I”, Nonlinear Anal., 40:1–8 (2000), 185–212 | DOI | MR | Zbl
[11] S. Goldstein (ed.), Modern Developments in Fluid Dynamics. An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes, v. I, Clarendon Press, Oxford, 1938 | Zbl
[12] K.-H. Hoffmann, N.D. Botkin, V.N. Starovoitov, “Homogenization of interfaces between rapidly oscillating fine elastic structures and fluids”, SIAM J.Appl. Math., 65:3 (2005), 983–1005 | DOI | MR | Zbl
[13] L. Hörmander, The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., 256, Springer, Berlin–Heidelberg, 1983 | MR | Zbl
[14] U. Hornung (ed.), Homogenization and porous media, Springer-Verlag, New York, 1997 | MR | Zbl
[15] W.-X. Huang, S. Alben, “Fluid-structure interactions with applications to biology”, Acta Mech. Sin., 32:6 (2016), 977–979 | DOI | MR | Zbl
[16] K. Koch, B. Bhushan, W. Barthlott, “Multifunctional plant surfaces and smart materials”, Springer Handbook of Nanotechnology, Part F: Biomimetics, ed. B. Bhushan, Springer, Berlin–Heidelberg, 2010, 1399–1436 | DOI
[17] E. Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley Sons Inc., Hoboken, 2011 | MR | Zbl
[18] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985 | MR | Zbl
[19] O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type, AMS, Providence, 1968 | MR | Zbl
[20] J.L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaire, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl
[21] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[22] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl
[23] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer, Berlin, 1980 | MR | Zbl
[24] S.A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Bulletin (Vestnik) of Novosibirsk State University. Mathematics, Mechanics and Informatics Series, 8:2 (2008), 106–130 | MR
[25] M.D.J. Schreuder, C.A. Brewer, C. Heine, “Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange”, J. Theor. Biol., 210 (2001), 23–32 | DOI
[26] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, 1971 | MR | Zbl
[27] T. Tao, An Introduction to Measure Theory, Graduate Studies in Mathematics, 126, AMS, Providence, 2011 | DOI | MR | Zbl
[28] R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, 2005 | MR | Zbl