Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1359-1450.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effective macroscopic model describing reciprocal motion of viscous weakly compressible fluid and two-level hierarchical fine bristle-like elastic structure is derived from microstructure via the Allaire-Briane homogenization method. This new model naturally generalizes the well-known system constructed by K.-H. Hoffmann, N. Botkin and V. Starovoitov for description of fine periodic elastic structures in fluids (2005). In applications, the established model can be used, for example, in description of airflow near surface of plant's leaf, in simulation of epithelium surfaces of blood vessels, and in design of biotechnological devices operating in liquids.
@article{SEMR_2020_17_a96,
     author = {S. A. Sazhenkov and E. V. Sazhenkova},
     title = {Homogenization of a {Submerged} {Two-Level} {Bristle} {Structure} for {Modeling} in {Biotechnology}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1359--1450},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
AU  - E. V. Sazhenkova
TI  - Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1359
EP  - 1450
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/
LA  - ru
ID  - SEMR_2020_17_a96
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%A E. V. Sazhenkova
%T Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1359-1450
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/
%G ru
%F SEMR_2020_17_a96
S. A. Sazhenkov; E. V. Sazhenkova. Homogenization of a Submerged Two-Level Bristle Structure for Modeling in Biotechnology. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1359-1450. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a96/

[1] G. Allaire, M. Briane, “Multiscale convergence and reiterated homogenization”, Proc. R. Soc. Edinb., 126A:2 (1996), 297–342 | DOI | MR | Zbl

[2] B. Bhushan, Y.C. Jung, M. Nosonovsky, “Lotus effect: surfaces with roughness-induced superhydrophobicity, self-cleaning and low adhesion”, Springer Handbook of Nanotechnology, Part F: Biomimetics, ed. B. Bhushan, Springer, Berlin–Heidelberg, 2010, 1437–1524 | DOI

[3] N. Botkin, M. Schlensog, M. Tewes, V. Turova, “A mathematical model of a biosensor”, 2001 International Conference on Modeling and Simulation of Microsystems, MSM 2001 (March 19–21, Hilton Island, SC, USA, Cambridge, MA, 2001), Computional Publ., 231–234

[4] D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999 | MR | Zbl

[5] H. Cohen, S.I. Rubinow, “Some mathematical topics in biology”, Proc. Symp. on System theory, Polytechnic Press, New York, 1965, 321–337

[6] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology, v. 5, Evolution problems I, Springer, Berlin, 2000 | MR | Zbl

[7] G.M. Fichtenholz, Course of Differential and Integral Calculus, v. 2, Nauka, M., 1969 (in Russian) | MR

[8] M.A. Genaev, A.V. Doroshkov, T.A. Pshenichnikova, N.I. Kolchanov, D.A. Afonnikov, “Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique”, Planta, 236 (2012), 1943–1954 | DOI

[9] P. Germain, Cours de mécanique des milieux continus, v. I, Théorie générale, Masson et Cie, Paris, 1973 | MR | Zbl

[10] R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: part I”, Nonlinear Anal., 40:1–8 (2000), 185–212 | DOI | MR | Zbl

[11] S. Goldstein (ed.), Modern Developments in Fluid Dynamics. An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes, v. I, Clarendon Press, Oxford, 1938 | Zbl

[12] K.-H. Hoffmann, N.D. Botkin, V.N. Starovoitov, “Homogenization of interfaces between rapidly oscillating fine elastic structures and fluids”, SIAM J.Appl. Math., 65:3 (2005), 983–1005 | DOI | MR | Zbl

[13] L. Hörmander, The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., 256, Springer, Berlin–Heidelberg, 1983 | MR | Zbl

[14] U. Hornung (ed.), Homogenization and porous media, Springer-Verlag, New York, 1997 | MR | Zbl

[15] W.-X. Huang, S. Alben, “Fluid-structure interactions with applications to biology”, Acta Mech. Sin., 32:6 (2016), 977–979 | DOI | MR | Zbl

[16] K. Koch, B. Bhushan, W. Barthlott, “Multifunctional plant surfaces and smart materials”, Springer Handbook of Nanotechnology, Part F: Biomimetics, ed. B. Bhushan, Springer, Berlin–Heidelberg, 2010, 1399–1436 | DOI

[17] E. Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley Sons Inc., Hoboken, 2011 | MR | Zbl

[18] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985 | MR | Zbl

[19] O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type, AMS, Providence, 1968 | MR | Zbl

[20] J.L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaire, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl

[21] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[22] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[23] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer, Berlin, 1980 | MR | Zbl

[24] S.A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Bulletin (Vestnik) of Novosibirsk State University. Mathematics, Mechanics and Informatics Series, 8:2 (2008), 106–130 | MR

[25] M.D.J. Schreuder, C.A. Brewer, C. Heine, “Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange”, J. Theor. Biol., 210 (2001), 23–32 | DOI

[26] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, 1971 | MR | Zbl

[27] T. Tao, An Introduction to Measure Theory, Graduate Studies in Mathematics, 126, AMS, Providence, 2011 | DOI | MR | Zbl

[28] R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, 2005 | MR | Zbl