On a boundary value problem for a high order mixed type equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 899-912.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a Dirichlet type problem for a Lavrentiev–Bitsadze type equation of high order type in a rectangular domain. The necessary and sufficient conditions for the uniqueness of the problem solution are obtained by using the spectral method. The solution is constructed in the form of a series of eigenfunctions. When substantiating the convergence of a series, the problem of «small» denominators arises. Sufficient conditions are obtained for the separability of the «small» denominator from zero.
Keywords: Differential equation, mixed type, boundary value problem, eigenvalue, eigenfunction, determinant, uniqueness, «small» denominators, series
Mots-clés : existence, convergence.
@article{SEMR_2020_17_a94,
     author = {B. Yu. Irgashev},
     title = {On a boundary value problem for a high order mixed type equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {899--912},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a94/}
}
TY  - JOUR
AU  - B. Yu. Irgashev
TI  - On a boundary value problem for a high order mixed type equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 899
EP  - 912
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a94/
LA  - en
ID  - SEMR_2020_17_a94
ER  - 
%0 Journal Article
%A B. Yu. Irgashev
%T On a boundary value problem for a high order mixed type equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 899-912
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a94/
%G en
%F SEMR_2020_17_a94
B. Yu. Irgashev. On a boundary value problem for a high order mixed type equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 899-912. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a94/

[1] A.V. Bitsadze, “Incorrectness of Dirichlet's problem for the mixed type of equations in mixed regions”, Dokl. Akad. Nauk SSSR, 122:2 (1958), 167–170 | MR | Zbl

[2] J.R. Cannon, “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Ann. Mat. Pura Appl., IV. Ser., 61 (1963), 371–377 | DOI | MR | Zbl

[3] A.M. Nakhushev, “A uniqueness condition of the Dirichlet problem for an equation of mixed type in a cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 | MR | Zbl

[4] B.I. Ptashnik, Ill-posed boundary-value problems for partial differential equations, Naukova Dumka, Kiev, 1984 | MR

[5] A.V. Bitsadze, Equations of Mixed Type, M., 1959 | MR | Zbl

[6] K.B. Sabitov, “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equ., 53:1 (2017), 86–98 | DOI | MR | Zbl

[7] K.B. Sabitov, “Cauchy problem for the beam vibration equation”, Differ. Equ., 53:5 (2017), 658–664 | DOI | MR | Zbl

[8] K.B. Sabitov, “The Dirichlet problem for higher-order partial differential equations”, Math. Notes, 97:2 (2015), 255–267 | DOI | MR | Zbl

[9] B.Yu. Irgashev, “Spectral problem for an equation of high even order”, Russ. Math., 60:7 (2016), 37–46 | DOI | MR | Zbl

[10] B.Yu. Irgashev, “On one boundary-value problem for an equation of higher even order”, Russ. Math., 61:9 (2017), 10–26 | DOI | MR | Zbl

[11] K.B. Sabitov, I.A. Khadzhi, “The boundary-value problem for the Lavrent'ev-Bitsadze equation with unknown right-hand side”, Russ. Math., 55:5 (2011), 35–42 | DOI | MR | Zbl