Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 406-415

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial-boundary value problem which describes unsteady motions of a viscous compressible two-component fluid. We formulate an approximate problem via the Galerkin method, and prove its solvability.
Keywords: Galerkin approximations, non-stationary boundary value problem, one-dimensional flow, homogeneous multi-velocity multifluid.
Mots-clés : viscous compressible fluid
@article{SEMR_2020_17_a87,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {406--415},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 406
EP  - 415
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/
LA  - en
ID  - SEMR_2020_17_a87
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 406-415
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/
%G en
%F SEMR_2020_17_a87
A. E. Mamontov; D. A. Prokudin. Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 406-415. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/