Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 406-415
Cet article a éte moissonné depuis la source Math-Net.Ru
We study an initial-boundary value problem which describes unsteady motions of a viscous compressible two-component fluid. We formulate an approximate problem via the Galerkin method, and prove its solvability.
Keywords:
Galerkin approximations, non-stationary boundary value problem, one-dimensional flow, homogeneous multi-velocity multifluid.
Mots-clés : viscous compressible fluid
Mots-clés : viscous compressible fluid
@article{SEMR_2020_17_a87,
author = {A. E. Mamontov and D. A. Prokudin},
title = {Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {406--415},
year = {2020},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/}
}
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 406 EP - 415 VL - 17 UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/ LA - en ID - SEMR_2020_17_a87 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 406-415 %V 17 %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/ %G en %F SEMR_2020_17_a87
A. E. Mamontov; D. A. Prokudin. Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 406-415. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a87/
[1] A. V. Kazhikov, A. N. Petrov, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian)
[2] A. N. Petrov, Din. Splosh. Sredy, 56 (1982), 105–121 (in Russian)
[3] I. Müller, Arch. Rat. Mech. Anal., 28, 1–39 \r 1968 | MR | Zbl
[4] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990
[5] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl
[6] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl