On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 260-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study initial boundary value problem on small motions (and normal oscillations) of hydromechanics system consists of three joined pendulums connected with each other by the spherical hinges and filled with homogeneous ideal fluids. We consider two different cases: conservative systems (without any friction forces) and weak dissipative system (friction forces in some hinges are proportional to difference between angular velocities). Using theory of operators acting in Hilbert space we formulate the problem as a Cauchy problem for differential-operator equation of first order, formulate theorem on strong solvability of the problem on the finite time segment. Corresponding spectral problem has a discrete real spectrum (conservative case) or spectrum situated in the strip along the real axis (dissipative case). For the first case we prove new variational principles, and power asymptotic of the eigenvalues with property of orthogonal basis of eigen elements. For the second case we find some estimates of eigenvalues and Abel-Lidsii basis property for the corresponding system of root elements.
Keywords: boundary value problem, self-adjoint operator, Hilbert space, discrete spectrum, eigenvalues asymptotic.
@article{SEMR_2020_17_a83,
     author = {V. I. Voytitsky and N. D. Kopachevsky},
     title = {On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {260--299},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a83/}
}
TY  - JOUR
AU  - V. I. Voytitsky
AU  - N. D. Kopachevsky
TI  - On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 260
EP  - 299
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a83/
LA  - ru
ID  - SEMR_2020_17_a83
ER  - 
%0 Journal Article
%A V. I. Voytitsky
%A N. D. Kopachevsky
%T On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 260-299
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a83/
%G ru
%F SEMR_2020_17_a83
V. I. Voytitsky; N. D. Kopachevsky. On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 260-299. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a83/

[1] N.E. Zhukovsky, “O dvizhenii tverdogo tela, imeyushchego polosti, napolnennye odnorodnoy kapel'noy zhidkost'yu”, Selected works, v. 1, Gostekhizdat, M.–L., 1948, 31–52 (In Russian)

[2] N.N. Moiseev, “Dvizhenie tverdogo tela, imeyushchego polost, chastichno zapolnennuju ideal'noy kapel'noy zhidkost'yu”, Dokl. Akad. Nauk SSSR, n. Ser., 85:4 (1952), 719–722 (In Russian) | Zbl

[3] L.N. Sretenskiy, “Kolebanie zhidkosti v podvizhnom sosude”, Dokl. Akad. Nauk SSSR, 10 (1951), 1483–1494 (In Russian)

[4] N.N. Moiseev, “Zadacha o dvizhenii tverdogo tela, soderzhashie zhidkie massy, imejushie svobodnuju poverhnist'”, Mat. Sb., N. Ser., 32:1 (1953), 61–96 (In Russian) | Zbl

[5] D.E. Ohotsimskiy, “K teorii dvizheniya tela s polost'ami, chastichno zapolnennymi zhidkost'yu”, Applied Mathematics and Mechanics, 20:1 (1956), 3–20 (In Russian)

[6] G.S. Narimanov, “On the motion of a rigid body of which a cavity is partly filled with a fluid”, Prikl. Mat. Mekh., 20:1 (1956), 21–38 (In Russian) | MR | Zbl

[7] N.N. Moiseev, V.V. Rum'antsev, Dynamics of bodies with fluid-filled cavities, Nauka, M., 1965 (In Russian) | Zbl

[8] N.N. Moiseev, A.A. Petrov, Numerical methods for calculating eigen frequencies and oscillations modes of bounded fluid volume, Vych. centr. AS USSR, M., 1966 (In Russian) | Zbl

[9] I.M. Rapoport, Oscillations of the elastic shell partially filled with liquid, Masinostroenie, M., 1967 (In Russian) | Zbl

[10] G.N. Mikishev, B.I. Rabinovich, Dynamics of a solid body with cavities partially filled with liquids, Masinostroenie, M., 1968 (In Russian)

[11] S.G. Krein, N.N. Moiseev, “On oscillations of a vessel containing a liquid with a free surface”, Prikl. Mat. Meh., 21:2 (1957), 169–174 (In Russian) | MR

[12] N.D. Kopachevsky, S.G. Krein, Ngo Zuy Kan, Operator methods in linear hydrodynamics: Evolution and spectral problems, Nauka, M., 1989 (In Russian) | MR | Zbl

[13] N.D. Kopachevsky, S.G. Krein, Operator approach to linear problems of hydrodynamics, v. 1, Operator Theory: Advances and Applications, 128, Self-–adjoint problems for an ideal fluid, Birkhauser Verlag, Basel–Boston–Berlin, 2001 | MR | Zbl

[14] N.D. Kopachevsky, S.G. Krein, Operator approach to linear problems of hydrodynamics, v. 2, Operator Theory: Advances and Applications, 146, Nonself-adjoint problems for viscous fluids, Birkhauser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl

[15] P.V. Harlamov, “Ob uravnenijah sistemy tverdyh tel”, Mechanics of Solid Body, 4 (1972), 52-–73 (In Russian)

[16] P.V. Harlamov, “Sostavnoj prostranstvennyi majatnik”, Mekh. Tverd. Tela, 4 (1972), 73-–82 (In Russian)

[17] Yu. N. Kononov, “On the motion of a system of coupled rigid bodies with cavities filled by fluid”, Mekh. Tverd. Tela, 30 (2000), 207–216 (In Russian) | MR | Zbl

[18] Yu. N. Kononov, “Ob ustoychivosti dvizheniya sistemy svazannyh tverdyh tel s polostjami, soderzhashimi zhidkost'”, Mekh. Tverd. Tela, 36 (2006), 75–82 (In Russian)

[19] E.I. Batyr, “Malye dvizheniya sistemy posledovatelno sochlenennyh tel s polostyami, soderzhashimi ideal'nuyu neszhimaemuyu zhidkost'”, Uchenye Zapiski Tavricheskogo National'nogo Universiteta imeni V. I. Vernadskogo, 15(54):2 (2002), 5–10 (In Russian)

[20] E.I. Batyr, N.D. Kopachevsky, “Small motions and normal oscillations in systems of connected gyrostats”, J. Math. Sci., 211:4 (2015), 441-–530 | MR | Zbl

[21] N.D. Kopachevsky, “On oscillations of a body with a cavity partially filled by heavy ideal liquid: theorems of existence, uniqueness and stability of strong solutions”, Zb. Pr. Inst. Mat. NAN Ukr., 2:1 (2005), 158-–194 (In Russian) | Zbl

[22] N.D. Kopachevsky, V.I. Voytitsky, Z.Z. Sitshaeva, “O kolebaniyah dvuh sochlenennyh majatnikov soderzhashih polost'i chastichno zapolnennye neszhimayemoy zhidkost'yu”, Contemporary Mathematics Fundamental Directions, 63:4 (2017), 627-–677 (In Russian)

[23] V.I. Voytitsky, N.D. Kopachevsky, “O malyh kolebaniyah sistemy iz treh sochlenennyh majatnikov s polost'ami zapolnennymi nesmeshivajushimisya neszhimayemymi zhidkost'ami”, Proceedings of the International Conference "Modern methods and problemsh of mathematical hydrodynamics" (Voronezh, 3–8 May 2018), 84-–91 (In Russian)

[24] V.I. Voytitsky, N.D. Kopachevsky, “O malyh dvizheniyah fizicheskogo mayatnika soderzhashego polost' zapolnennuyu sistemoy odnorodnyh nesmeshivajushihsya zhidkost'ej”, Proceedings of the International Conference "Crimea Autumn Mathematical School–2018, sections 1–3" (Laspi, 17–29 September 2018), 58-–62 (In Russian)

[25] V.I. Voytitsky, “To the small motion problem of three joined pendulums with cavities filled with homogeneous incompressible fluids”, Dyn. Syst., 8(36):4 (2018), 337-–356 (In Russian) | Zbl

[26] V.I. Voytitsky, N.D. Kopachevsky, “Problema normal'nyh dvizheniy mayatnika s treniem v sharnire i polost'yu zapolnennoy ideal'noy zhidkost'yu”, Proceedings of the International Conference "Modern Problems of Mathematics and Mechanics" (Moscow, 13–15 May 2019), 252-–255 (In Russian)

[27] N.D. Kopachevsky, V.I. Voytitsky, Z.Z. Sitshayeva, “On two hydromechanical problems inspired by works of S. Krein”, Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, AMS, 2019, 219–238 | MR | Zbl

[28] N.D. Kopachevsky, V.I. Voytitsky, Z.Z. Sitshaeva, “O kolebaniyah sochlenennyh majatnikov s polost'ami zapolnennymi odnorodnymi zhidkost'ami”, Contemporary Mathematics Fundamental Directions, 65:3 (2019), 434-–512 (In Russian)

[29] V.I. Voytitsky, N.D. Kopachevsky, “Problema malyh dvizheniy sochlenennyh mayatnikov s polost'ami soderzhashimi odnorodnyyu neszhimaemuyu ideal'nuyu zhidkost'”, Proceedings of the International Conference "Crimea Autumn Mathematical School–2019, sections 1–3" (Laspi, 17–29 September 2019), 57-–59 (In Russian)

[30] N.D. Kopachevsky, Abstract Green's formula, Forma, Simferopol, 2016 (In Russian)

[31] N.D. Kopachevsky, K.A. Radomirskaya, “Abstract mixed boundary–value and spectral conjugation problems and their applications”, J. Math. Sci., 239:5 (2019), 608-–643 | MR | Zbl

[32] M.Sh. Birman, M.Z. Solom'ak, “Spectral asymptotics of differential equations”, Itogi Nauki Tekh., Ser. Mat. Anal., 14, 1977, 5–52 (In Russian) | Zbl

[33] L.S. Pontryagin, “Hermitian operators in spaces with indefinite metric”, Izv. Acad. Nauk SSSR, Ser. Mat., 8:6 (1944), 243–280 (In Russian) | MR | Zbl

[34] T. Ya. Azizov, I.S. Iohvidov, Foundations of the theory of linear operators in spaces with indefinite metric, Nauka, M., 1986 (In Russian) | MR | Zbl

[35] A.G. Kost'uchenko, A.A. Shkalikov, “Self-adjoint quadratic operator pencils and elliptic problems”, Funct. Anal. Appl., 17:2 (1983), 109–128 | MR | Zbl

[36] A.G. Kost'uchenko, A.A. Shkalikov, “Zadachi difraktsii dlya periodicheskoy poverhnosti dlya uravneniya Gelmgoltsa”, Selected Issues of Mathematics, Mechanics and Applications, MSU, 1999, 240–258 (In Russian)

[37] M.S. Agranovich, “Summability of series in root vectors of non-self-adjoint elliptic operators”, Funct. Anal. Appl., 10:3 (1976), 1-–12 | MR | Zbl

[38] V.B. Lidskii, “Summability of series in the principal vectors of non-selfadjoint operators”, Am. Math. Soc., Transl., II. Ser., 40 (1962), 193–228 | MR | Zbl

[39] A.S. Markus, “Expansion in root vectors of a slightly perturbed self-adjoint operator”, Sov. Math., Dokl., 3 (1962), 104–108 | MR | Zbl

[40] V.E. Katsnelson, “Conditions under which systems of eigenvectors of some classes of operators form a basis”, Funkts. Anal. Prilozh., 1:2 (1967), 39–51 | Zbl