Passage to the limit in the Galerkin approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 227-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the initial-boundary value problem which describes the unsteady motion of a viscous compressible heat-conducting multicomponent fluid in a bounded domain of three-dimensional space. The passage to the limit is done in the Galerkin approximations of the regularized problem.
Keywords: Galerkin approximations, non-stationary boundary value problem, three-dimensional flow, viscous compressible heat-conducting fluid, homogeneous multi-velocity single-temperature multifluid.
@article{SEMR_2020_17_a82,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Passage to the limit in the {Galerkin} approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {227--259},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a82/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Passage to the limit in the Galerkin approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 227
EP  - 259
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a82/
LA  - ru
ID  - SEMR_2020_17_a82
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Passage to the limit in the Galerkin approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 227-259
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a82/
%G ru
%F SEMR_2020_17_a82
A. E. Mamontov; D. A. Prokudin. Passage to the limit in the Galerkin approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 227-259. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a82/

[1] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | MR | Zbl

[2] A.E. Mamontov, D.A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | MR | Zbl

[3] A.E. Mamontov, D.A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | MR | Zbl

[4] A.E. Mamontov, D.A. Prokudin, “Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible heat-conductive multifluid”, Sib. Electron Mat. Izv., 16 (2019), 547–590 | MR | Zbl

[5] R.I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990

[6] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[7] K.L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl