A note on perfect packing of $d$-dimensional cubes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1009-1012
Cet article a éte moissonné depuis la source Math-Net.Ru
The $d$-dimensional cubes of edges of length $\ 1, 2^{-t}, 3^{-t}, 4^{-t},\ldots $ can be packed perfectly into a $d$-dimensional box, provided $\ 1/d < t \le 2^{d-1}/(d2^{d-1}-1)$.
Keywords:
packing, tiling, $d$-cube.
@article{SEMR_2020_17_a71,
author = {J. Januszewski and {\L}. Zielonka},
title = {A note on perfect packing of $d$-dimensional cubes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1009--1012},
year = {2020},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a71/}
}
J. Januszewski; Ł. Zielonka. A note on perfect packing of $d$-dimensional cubes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1009-1012. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a71/
[1] A. Joós, “Perfect packing of $d$-cubes”, Siberian Electronic Mathematical Reports, 20 (2020), 853–864 | MR