On recursion relations in the problem of enumeration of posets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 190-207

Voir la notice de l'article provenant de la source Math-Net.Ru

In two previous works of the author, published in this journal, a series of formulas are obtained related to the themes of enumeration of partial orders (finite topologies). In the first work, a formula is proved that reduces the calculation of the number $T_0(n)$ of all partial orders defined on an $n$-set to the calculation of the numbers $W(p_1,\ldots,p_k)$ of partial orders of a special form. In the second paper, a partially convolute formula is obtained for the number $T_0(n)$. Relations of a recurrent nature are obtained that relate the individual values $W(p_1,\ldots,p_k).$ Explicit formulas are presented for calculating the individual values $W(p_1,\ldots,p_k). $ In this paper, we obtain new recurrence relations that relate the separate numbers $W(p_1,\ldots,p_k)$ between themselves. The obtained equations are enough to calculate without the computer the numbers $T_0(n)$ for all $n9.$ To calculate the number $T_0(9)$ of these relations not enough (the number of required numbers $W(p_1,\ldots,p_k)$ is $128$, and the rank of the system matrix is $123$; there are not enough five equations generating the desired rank). We admit the presence of some general regularity generating new formulas.
Keywords: graph enumeration, poset, finite topology.
@article{SEMR_2020_17_a61,
     author = {V. I. Rodionov},
     title = {On recursion relations in the problem of enumeration of posets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {190--207},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a61/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On recursion relations in the problem of enumeration of posets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 190
EP  - 207
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a61/
LA  - ru
ID  - SEMR_2020_17_a61
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On recursion relations in the problem of enumeration of posets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 190-207
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a61/
%G ru
%F SEMR_2020_17_a61
V. I. Rodionov. On recursion relations in the problem of enumeration of posets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 190-207. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a61/