Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 318-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{R}^{\vee}_+$ be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication and $C^{\vee}(X)$ be the semiring of continuous $\mathbb{R}^{\vee}_+$-valued functions on an arbitrary topological space $X$ with pointwise operation max-addition and multiplication. We call a subset $A\subseteq C^{\vee}(X)$ a subalgebra of the semiring $C^{\vee}(X)$ if $f\vee g,$ $fg,$ $rf\in A$ for any $f, g\in A$ and $r\in\mathbb{R}^{\vee}_+.$ For arbitrary topological spaces $X$ and $Y,$ we describe isomorphisms of the lattices of subalgebras (subalgebras with unity) of the semirings $C^{\vee}(X)$ and $C^{\vee}(Y).$
Keywords: semirings of continuous functions, lattice of subalgebras, Hewitt space, max-addition.
Mots-clés : subalgebra, isomorphism
@article{SEMR_2020_17_a6,
     author = {V. V. Sidorov},
     title = {Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {318--337},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a6/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 318
EP  - 337
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a6/
LA  - ru
ID  - SEMR_2020_17_a6
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 318-337
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a6/
%G ru
%F SEMR_2020_17_a6
V. V. Sidorov. Isomorphisms of semirings of continuous nonnegative functions with max-addition and isomorphisms of lattices of their subalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 318-337. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a6/

[1] V.V. Sidorov, “Isomorphisms of lattices of subalgebras of the semifields of continuous positive functions with max-addition”, Sib. Electron. Math. Izv., 16 (2019), 1493–1530 | MR | Zbl

[2] L. Gillman, M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1976 | MR | Zbl

[3] I.M. Gelfand, A.N. Kolmogorov, “On rings of continuous functions on topological spaces”, Dokl. Akad. Nauk SSSR, 22:1 (1939), 11–15 | Zbl

[4] E. Hewitt, “Rings of real-valued continuous functions. I”, Trans. Am. Math. Soc., 64:1 (1948), 45–99 | MR | Zbl

[5] E.M. Vechtomov, “Lattice of subalgebras of the ring of continuous functions and Hewitt spaces”, Mat. Notes, 62:5 (1997), 575–580 | MR | Zbl

[6] V.V. Sidorov, “Lattices of subalgebras of semirings of continuous nonnegative functions with the max-plus”, J. Math. Sci., 221:3 (2017), 409–435 | MR | Zbl

[7] E.M. Vechtomov, V.V. Sidorov, “Determinability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus”, Tr. Inst. Mat. i Mech. UrO RAN, 21, no. 3, 2015, 78–88 | MR

[8] V.V. Sidorov, “Determinability of Hewitt spaces by the lattices of subalgebras with unit of semifields of continuous positive functions with max-plus”, Lobachevskii J. Math., 38:4 (2017), 741–750 | MR | Zbl

[9] V.V. Sidorov, “Determinability of semirings of continuous nonnegative functions with max-plus by the lattices of their subalgebras”, Lobachevskii J. Math., 40:1 (2019), 90–100 | MR | Zbl