On hypersurfaces with Kirichenko--Uskorev structure in K\"ahlerian manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1715-1721.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some criteria of minimality of a hypersurfaces of a Kählerian manifold, equipped with an almost contact metric structure of cosymplectic type, are established. It is proved that a minimal hypersurfaces of a Kählerian manifold, equipped with an almost contact metric Kirichenko–Uskorev structure, is totally umbilical if and only it is totally geodesic.
Keywords: Kählerian manifold, almost contact metric structure, second fundamental form.
Mots-clés : Kirichenko–Uskorev structure, minimal hypersurface
@article{SEMR_2020_17_a59,
     author = {M. B. Banaru and G. A. Banaru},
     title = {On hypersurfaces with {Kirichenko--Uskorev} structure in {K\"ahlerian} manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1715--1721},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a59/}
}
TY  - JOUR
AU  - M. B. Banaru
AU  - G. A. Banaru
TI  - On hypersurfaces with Kirichenko--Uskorev structure in K\"ahlerian manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1715
EP  - 1721
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a59/
LA  - ru
ID  - SEMR_2020_17_a59
ER  - 
%0 Journal Article
%A M. B. Banaru
%A G. A. Banaru
%T On hypersurfaces with Kirichenko--Uskorev structure in K\"ahlerian manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1715-1721
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a59/
%G ru
%F SEMR_2020_17_a59
M. B. Banaru; G. A. Banaru. On hypersurfaces with Kirichenko--Uskorev structure in K\"ahlerian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1715-1721. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a59/

[1] A.L. Kholodenko, Applications of contact geometry and topology in physics, World Scientific, Hackensack etc, 2013 | MR | Zbl

[2] M.B. Banaru, V.F. Kirichenko, “Almost contact metric structures on the hypersurface of almost Hermitian manifolds”, J. Math. Sci., (New York), 207:4 (2015), 513–537 | DOI | MR | Zbl

[3] L.V. Stepanova, Contact geometry of hypersurfaces in quasi-Kählerian manifolds, PhD thesis, Moscow State Pedagogical University, 1995

[4] V.F. Kirichenko, I.V. Uskorev, “Invariants of conformal transformations of almost contact metric structures”, Math. Notes, 84:5 (2008), 783–794 | DOI | MR | Zbl

[5] V.F. Kirichenko, Differential-geometric structures on manifolds, Pechatnyi Dom, Odessa, 2013

[6] V.F. Kirichenko, “Methods of generalized Hermitian geometry in the theory of almost-contact manifolds”, J. Sov. Math., 42:5 (1988), 1885–1919 | DOI | MR | Zbl

[7] M.B. Banaru, “On almost contact metric 1-hypersurfaces in Kählerian manifolds”, Sib. Math. J., 55:4 (2014), 585–588 | DOI | MR | Zbl

[8] L.V. Stepanova, M.B. Banaru, G.A. Banaru, “On geometry of QS-hypersurfaces of Kählerian manifolds”, Sib. Electron. Math. Izv., 15 (2018), 815–822 | MR | Zbl

[9] S. Ianus, Geometrie diferenţială cu aplicaţii in teoria relativităţii, Editura Academiei Romane, Bucuresti, 1983 | MR | Zbl

[10] L.V. Stepanova, M.B. Banaru, “On hypersurfaces of quasi-Kählerian manifolds”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, 47:1 (2001), 165–170 | MR | Zbl

[11] M.B. Banaru, “On cosymplectic hypersurfaces of six-dimensional Kählerian submanifolds of the Cayley algebra”, Russ. Math., 47:7 (2003), 60–63 | MR | Zbl

[12] M.B. Banaru, “On the Kenmotsu hypersurfaces of special Hermitian manifolds”, Sib. Math. J., 45:1 (2004), 7–10 | DOI | MR | Zbl

[13] A. Abu-Saleem, M.B. Banaru, “Two theorems on Kenmotsu hypersurfaces in a $W_3$-manifold”, Stud. Univ. Babeş-Bolyai, Math., 51:3 (2005), 3–11 | MR | Zbl