Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a50, author = {A. V. Logachov and Y. M. Suhov and N. D. Vvedenskaya and A. A. Yambartsev}, title = {A remark on normalizations in a local large deviations principle for inhomogeneous birth -- and -- death process}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1258--1269}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a50/} }
TY - JOUR AU - A. V. Logachov AU - Y. M. Suhov AU - N. D. Vvedenskaya AU - A. A. Yambartsev TI - A remark on normalizations in a local large deviations principle for inhomogeneous birth -- and -- death process JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1258 EP - 1269 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a50/ LA - en ID - SEMR_2020_17_a50 ER -
%0 Journal Article %A A. V. Logachov %A Y. M. Suhov %A N. D. Vvedenskaya %A A. A. Yambartsev %T A remark on normalizations in a local large deviations principle for inhomogeneous birth -- and -- death process %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1258-1269 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a50/ %G en %F SEMR_2020_17_a50
A. V. Logachov; Y. M. Suhov; N. D. Vvedenskaya; A. A. Yambartsev. A remark on normalizations in a local large deviations principle for inhomogeneous birth -- and -- death process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1258-1269. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a50/
[1] A.S. Novozhilov, G.P. Karev, E.V. Koonin, “Biological applications of the theory of birth-and-death processes”, Briefings in bioinformatics, 7:1 (2006), 70–85 | DOI | MR
[2] L.M. Ricciardi, “Stochastic population theory: birth and death processes”, Biomathematics, 17 (1986), 155–190 | MR
[3] J.R. Norris, Markov chains, Reprint, Cambridge university press, Cambridge, 1998 | MR | Zbl
[4] M. Kijima, Markov processes for stochastic modeling, Chapman Hall, London, 1997 | MR | Zbl
[5] F.W. Crawford, L.S. T. Ho, M.A. Suchard, “Computational methods for birth-death processes”, WIREs Computational Statistics, 10:2 (2018) | DOI | MR
[6] A. Mogulsky, E. Pechersky, A. Yambartsev, “Large deviations for excursions of non-homogeneous Markov processes”, Electro. Commun. Probab., 19 (2014), 37, 1–8 | MR | Zbl
[7] N. Vvedenskaya, Y. Suhov, V. Belitsky, “A non-linear model of trading mechanism on a financial market”, Markov Processes. Rel. Fields, 19:1 (2013), 83–98 | MR | Zbl
[8] V.S. Korolyuk, N.I. Portenko, A.V. Skorokhod, A.F. Turbin, A manual on probability theory and mathematical statistics, Nauka, M., 1985 | MR | Zbl
[9] E.B. Dynkin, Markovskie protsessy, Springer, Berlin etc, 1965 | Zbl
[10] K. Itô, Stochastic Processes, Lecture Notes Series, 16, Matematisk Institut, Aarhus Universitet, Aarhus, 1963 | MR | Zbl
[11] A.A. Borovkov, A.A. Mogul'skii, “Iniqualities and Principle of Large Deviations for the Trajectories of Processes with Independent Increments”, Sib. Math. J., 54:2 (2013), 217–226 | DOI | MR | Zbl
[12] W. Feller., An Introduction to Probability Theory and Its Applications, v. II, Wiley, New York, 1971 | MR | Zbl
[13] N.D. Vvedenskaya, A.V. Logachov, Y.M. Suhov, A.A. Yambartsev, “Local large deviations for inhomogeneous birth-and-death processes”, Probl. Inf. Transm., 54:3 (2018), 263–280 | DOI | MR | Zbl
[14] A.V. Logachov, “The local principle of large deviations for solutions of Itô stochastic equations with quick drift”, J. Math. Sci., 218:1 (2016), 28–38 | DOI | MR | Zbl
[15] E. Seneta, Regularly Varying Sequences, Lecture Notes in Mathematics, Springer, Berlin etc., 1976 | DOI | MR | Zbl