Sharp asymptotics for the Laplace transform of the compound renewal process and related problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 824-839.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp asymptotics for the Laplace transform of the compound renewal process (CRP) are found under the Cramer moment condition on the jumps of the process. This result allowed us to obtain asymptotic inequalities for the distribution of the maximum value of the CRP on increasing time intervals and also to find the asymptotic behavior of all the moments of the CRP. The asimptotics of the two first moments of CRP are found under conditions close to minimal ones.
Keywords: compound renewal process, sharp asymptotics, distribution of the maximum of process, asymptotics of the moments.
Mots-clés : Laplace transform
@article{SEMR_2020_17_a46,
     author = {A. A. Borovkov},
     title = {Sharp asymptotics for the {Laplace} transform of the compound renewal process and related problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {824--839},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a46/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Sharp asymptotics for the Laplace transform of the compound renewal process and related problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 824
EP  - 839
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a46/
LA  - ru
ID  - SEMR_2020_17_a46
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Sharp asymptotics for the Laplace transform of the compound renewal process and related problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 824-839
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a46/
%G ru
%F SEMR_2020_17_a46
A. A. Borovkov. Sharp asymptotics for the Laplace transform of the compound renewal process and related problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 824-839. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a46/

[1] Borovkov A. A., Mogulskii A. A., “Integro-Local Limit Theorems for Compound Renewal Processes under Cramer'S Condition. I; II”, Siberian Mathematical Journal, 59:3 (2018), 383–402 | DOI | MR | Zbl

[2] Borovkov A. A., Asymptotic analysis of random walks. Fast decaying distributions of jumps, M., Fizmatlit, 2013

[3] Borovkov A. A., Mogulskii A. A., Prokopenko E. I., “Properties of the deviation function of a compound renewal process and the asymptotics of the Laplace transform over its distribution”, Teoriya veroyatnostei i ee primeneniya, 64:4 (2019), 625–641 | DOI | MR

[4] Borovkov A. A., Mogulskii A. A., “Large deviations principles for finite-dimensional distributions of compound renewal processes”, Siberian Mathematical Journal, 56:1 (2015), 28–53 | DOI | MR | Zbl

[5] Borovkov A. A., “Integro-local limit theorems for compound renewal processes”, Theory of Probability and its Applications, 62:2 (2018), 175–195 | DOI | MR | Zbl

[6] Borovkov A. A., Probability Theory, 5th ed., Knizhnyj dom “LIBROKOM”, M., 2009 | MR

[7] Csörgo M., Deheuvels P., Hervatt L., “An approximation of stopped sums with applications in queueing theory”, Adv. Appl. Probability, 19 (1987), 674–690 | DOI | MR | Zbl