On the distribution of the trajectory maximum of a stochastic process with switchings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 807-813.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a stochastic process with switchings between two stationary processes with independent increments while achieving regulatory barriers. The regulation is intended to keep under control the range of trajectories. At the same time the structure of the process allows the trajectories stay some time outside the band adjustments. The paper establishes limit theorem for the distribution of the maximum possible excess of the upper regulatory barrier.
Keywords: stochastic process with switchings, boundary crossing problems, regenerative process, limit theorems.
@article{SEMR_2020_17_a45,
     author = {V. I. Lotov and V. R. Xodjibayev},
     title = {On the distribution of the trajectory maximum of a stochastic process with switchings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {807--813},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a45/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Xodjibayev
TI  - On the distribution of the trajectory maximum of a stochastic process with switchings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 807
EP  - 813
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a45/
LA  - ru
ID  - SEMR_2020_17_a45
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Xodjibayev
%T On the distribution of the trajectory maximum of a stochastic process with switchings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 807-813
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a45/
%G ru
%F SEMR_2020_17_a45
V. I. Lotov; V. R. Xodjibayev. On the distribution of the trajectory maximum of a stochastic process with switchings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 807-813. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a45/

[1] Yu.V. Prokhorov, “Control by a Wiener process with a limited number of switchings”, Tr. Mat. Inst. Steklova, 71, 1964, 82–87 (Russian) | MR | Zbl

[2] V.I. Lotov, “On a random walk with switchings”, Sib. Electron. Mat. Izv., 15 (2018), 1320–1331 | MR | Zbl

[3] V.I. Lotov, V.R. Khodjibayev, “On a stochastic process with switchings”, Sib. Electron. Mat. Izv., 16 (2019), 1531–1546 | DOI | MR | Zbl

[4] V.I. Lotov, “On the distribution of the trajectory maximum of a random walk with switchings”, Sib. Electron. Mat. Izv., 16 (2019), 998–1004 | DOI | MR | Zbl

[5] V.I. Lotov, “On the asymptotics of the ruin probability”, Theory Probab. Appl., 59:1 (2015), 154–163 | DOI | MR | Zbl

[6] A.A. Mogul'skii, “On the size of the first jump for a process with independent increments”, Theory Probab. Appl., 21 (1976), 470–481 | DOI | MR | Zbl

[7] B.A. Rogozin, “On the distributions of some functional related to boundary problems for processes with independent increments”, Theor. Probab. Appl., 11 (1966), 580–591 | DOI | MR | Zbl

[8] B.A. Rogozin, “On the local behavior of processes with independent increments”, Theor. Probab. Appl., 13 (1968), 482–486 | DOI | MR | Zbl

[9] N.S. Bratiichuk, D.V. Gusak, Boundary problems for the processes with independent increments, Naukova Dumka, Kiev, 1990 | MR

[10] B.A. Rogozin, “Distribution of the maximum of a process with independent increments”, Sib. Math. J., 10 (1969), 989–1010 | DOI | MR | Zbl