Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 672-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X_{n,t})_{t=1}^{\infty}$ be a stationary absolutely regular sequence of real random variables with the distribution dependent on the number $n$. The paper presents sufficient conditions for the asymptotic normality (for $n\to\infty$ and common centering and normalization) of the distribution of the nonhomogeneous $U$-statistic of order $r$ which is given on the sequence $X_{n,1},\ldots,X_{n,n}$ with a kernel also dependent on $n$. The same results for $V$-statistics also hold. To analyze sums of dependent random variables with rare strong dependencies, the proof uses the approach that was proposed by S. Janson in 1988 and upgraded by V. Mikhailov in 1991 and M. Tikhomirova and V. Chistyakov in 2015.
Keywords: absolute regularity condition, characterizing graph, central limit theorem, dependency graph, $U$-statistic, $V$-statistic, stationary sequence.
@article{SEMR_2020_17_a44,
     author = {V. G. Mikhailov and N. M. Mezhennaya},
     title = {Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {672--682},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - N. M. Mezhennaya
TI  - Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 672
EP  - 682
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/
LA  - en
ID  - SEMR_2020_17_a44
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A N. M. Mezhennaya
%T Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 672-682
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/
%G en
%F SEMR_2020_17_a44
V. G. Mikhailov; N. M. Mezhennaya. Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 672-682. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/

[1] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl

[2] A.M. Zubkov, V.G. Mikhailov, “Limit distributions of random variables connected with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | DOI | MR | Zbl

[3] A.M. Zubkov, V.G. Mikhailov, “On the repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282 | DOI | MR | Zbl

[4] M.I. Tikhomirova, “Limit distributions of the number of absent chains of identical outcomes”, Discrete Math. Appl., 18:3 (2008), 293–300 | DOI | MR | Zbl

[5] M.I. Tikhomirova, “Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials”, Discrete Math. Appl., 19:3 (2009), 293–308 | DOI | MR | Zbl

[6] V.G. Mikhailov, “On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains”, Discrete Math. Appl., 12:4 (2002), 393–400 | DOI | MR | Zbl

[7] A.M. Shoitov, “Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays”, Discrete Math. Appl., 12:2 (2002), 165–181 | DOI | MR | Zbl

[8] V.G. Mikhailov, A.M. Shoitov, “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 | DOI | MR | Zbl

[9] A.M. Shoitov, “The Poisson approximation for the number of matches of values of a discrete function on segments of a sequence of random variables”, Discrete Math. Appl., 15:3 (2005), 241–254 | DOI | MR | Zbl

[10] A.M. Shoitov, “Normal approximation in a problem on equivalent tuples”, Tr. Diskr. Mat., 10 (2007), 326–349

[11] A.M. Shoitov, “Asymptotic distributional properties of the number of pairs of metrically close and functionally connected tuples in a polynomial scheme”, Tr. Diskr. Mat., 11:1 (2008), 151–165

[12] V.S. Koroljuk, Yu.V. Borovskych, Theory of $U$-statistics, Springer, Dordrecht, Netherlands, 1994 | MR

[13] K. Yoshihara, “Limiting behavior of $U$-statistics for stationary absolutely regular process”, Z. Wahrsch. Verw. Gebiete, 35 (1976), 237–252 | DOI | MR | Zbl

[14] M. Denker, G. Keller, “On $U$-statistics and V. Mises' statistics for weakly dependent processes”, Z. Wahrsch. Verw. Gebiete, 64 (1983), 505–522 | DOI | MR | Zbl

[15] I. Dewan, P. Rao, “Central limit theorem for $U$-statistics of associated random variables”, Stat. Probab. Lett., 57:1 (2002), 9–15 | DOI | MR | Zbl

[16] H. Dehling, “Limit teorems for dependent $U$-statistics”, Depedence in Probability and Statistics, eds. Bertail et al., Springer, New York, 2006, 65–86 | DOI | MR | Zbl

[17] P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New-York, 1994 | DOI | MR | Zbl

[18] Sh.A. Khashimov, “The central limit theorem for generalized $U$-statistics for weakly dependent vectors”, Theory Probab. Appl., 38:3 (1993), 456–469 | DOI | MR | Zbl

[19] Sh.A. Khashimov, “On the asymptotical distribution of the generalized $U$-statistic for depending values”, Theory Probab. Appl., 32:2 (1987), 373–375 | DOI | MR | Zbl

[20] Sh.A. Khashimov, “Limiting behavior of generalized $U$-statistics of weakly dependent stationary processes”, Theory Probab. Appl., 37:1 (1993), 148–150 | DOI | MR | Zbl

[21] V.G. Mikhailov, “The central limit theorem for nonhomogeneous U-statistics of finitely dependent random variables”, Math. USSR-Sb., 27:4 (1975), 554–563 | DOI | MR | Zbl

[22] S. Janson, “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 306–312 | DOI | MR | Zbl

[23] V.G. Mikhailov, “On a theorem of Janson”, Theory Probab. Appl., 36:1 (1991), 173–176 | DOI | MR | Zbl

[24] M.I. Tikhomirova, V.P. Chistyakov, “On the asymptotic normality of some sums of dependent random variables”, Discrete Math. Appl., 27:2 (2017), 123–129 | DOI | MR | Zbl

[25] V.G. Mikhailov, A.M. Shoitov, “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | MR | Zbl

[26] V.G. Mikhailov, “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | MR | Zbl

[27] V. Féray, “Weighted dependence graph”, Electron. J. Pobab., 23 (2018), 65, arXiv: 1605.0386v1 | MR | Zbl

[28] V. Féray, Central limit theorems for patterns in multiset permutations and set partitions, 9 Nov 2018, arXiv: 1811.03923v1 [math.CO] | MR