Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a44, author = {V. G. Mikhailov and N. M. Mezhennaya}, title = {Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {672--682}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/} }
TY - JOUR AU - V. G. Mikhailov AU - N. M. Mezhennaya TI - Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 672 EP - 682 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/ LA - en ID - SEMR_2020_17_a44 ER -
%0 Journal Article %A V. G. Mikhailov %A N. M. Mezhennaya %T Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 672-682 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/ %G en %F SEMR_2020_17_a44
V. G. Mikhailov; N. M. Mezhennaya. Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 672-682. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a44/
[1] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl
[2] A.M. Zubkov, V.G. Mikhailov, “Limit distributions of random variables connected with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | DOI | MR | Zbl
[3] A.M. Zubkov, V.G. Mikhailov, “On the repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282 | DOI | MR | Zbl
[4] M.I. Tikhomirova, “Limit distributions of the number of absent chains of identical outcomes”, Discrete Math. Appl., 18:3 (2008), 293–300 | DOI | MR | Zbl
[5] M.I. Tikhomirova, “Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trials”, Discrete Math. Appl., 19:3 (2009), 293–308 | DOI | MR | Zbl
[6] V.G. Mikhailov, “On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains”, Discrete Math. Appl., 12:4 (2002), 393–400 | DOI | MR | Zbl
[7] A.M. Shoitov, “Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays”, Discrete Math. Appl., 12:2 (2002), 165–181 | DOI | MR | Zbl
[8] V.G. Mikhailov, A.M. Shoitov, “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 | DOI | MR | Zbl
[9] A.M. Shoitov, “The Poisson approximation for the number of matches of values of a discrete function on segments of a sequence of random variables”, Discrete Math. Appl., 15:3 (2005), 241–254 | DOI | MR | Zbl
[10] A.M. Shoitov, “Normal approximation in a problem on equivalent tuples”, Tr. Diskr. Mat., 10 (2007), 326–349
[11] A.M. Shoitov, “Asymptotic distributional properties of the number of pairs of metrically close and functionally connected tuples in a polynomial scheme”, Tr. Diskr. Mat., 11:1 (2008), 151–165
[12] V.S. Koroljuk, Yu.V. Borovskych, Theory of $U$-statistics, Springer, Dordrecht, Netherlands, 1994 | MR
[13] K. Yoshihara, “Limiting behavior of $U$-statistics for stationary absolutely regular process”, Z. Wahrsch. Verw. Gebiete, 35 (1976), 237–252 | DOI | MR | Zbl
[14] M. Denker, G. Keller, “On $U$-statistics and V. Mises' statistics for weakly dependent processes”, Z. Wahrsch. Verw. Gebiete, 64 (1983), 505–522 | DOI | MR | Zbl
[15] I. Dewan, P. Rao, “Central limit theorem for $U$-statistics of associated random variables”, Stat. Probab. Lett., 57:1 (2002), 9–15 | DOI | MR | Zbl
[16] H. Dehling, “Limit teorems for dependent $U$-statistics”, Depedence in Probability and Statistics, eds. Bertail et al., Springer, New York, 2006, 65–86 | DOI | MR | Zbl
[17] P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New-York, 1994 | DOI | MR | Zbl
[18] Sh.A. Khashimov, “The central limit theorem for generalized $U$-statistics for weakly dependent vectors”, Theory Probab. Appl., 38:3 (1993), 456–469 | DOI | MR | Zbl
[19] Sh.A. Khashimov, “On the asymptotical distribution of the generalized $U$-statistic for depending values”, Theory Probab. Appl., 32:2 (1987), 373–375 | DOI | MR | Zbl
[20] Sh.A. Khashimov, “Limiting behavior of generalized $U$-statistics of weakly dependent stationary processes”, Theory Probab. Appl., 37:1 (1993), 148–150 | DOI | MR | Zbl
[21] V.G. Mikhailov, “The central limit theorem for nonhomogeneous U-statistics of finitely dependent random variables”, Math. USSR-Sb., 27:4 (1975), 554–563 | DOI | MR | Zbl
[22] S. Janson, “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 306–312 | DOI | MR | Zbl
[23] V.G. Mikhailov, “On a theorem of Janson”, Theory Probab. Appl., 36:1 (1991), 173–176 | DOI | MR | Zbl
[24] M.I. Tikhomirova, V.P. Chistyakov, “On the asymptotic normality of some sums of dependent random variables”, Discrete Math. Appl., 27:2 (2017), 123–129 | DOI | MR | Zbl
[25] V.G. Mikhailov, A.M. Shoitov, “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | MR | Zbl
[26] V.G. Mikhailov, “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | MR | Zbl
[27] V. Féray, “Weighted dependence graph”, Electron. J. Pobab., 23 (2018), 65, arXiv: 1605.0386v1 | MR | Zbl
[28] V. Féray, Central limit theorems for patterns in multiset permutations and set partitions, 9 Nov 2018, arXiv: 1811.03923v1 [math.CO] | MR