On axiomatizability of the class of finitary matroids and decidability of their universal theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1730-1740
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, finitary matroids are studied by means of the model theory. It is shown that the class of finitary matroids is nonaxiomatizable. Decidability of the universal theory of this class is proved.
Keywords:
axiomatizability, finitary matroid, universal theory, decidability.
@article{SEMR_2020_17_a39,
author = {A. V. Il'ev and V. P. Il'ev},
title = {On axiomatizability of the class of finitary matroids and decidability of their universal theory},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1730--1740},
year = {2020},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a39/}
}
TY - JOUR AU - A. V. Il'ev AU - V. P. Il'ev TI - On axiomatizability of the class of finitary matroids and decidability of their universal theory JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1730 EP - 1740 VL - 17 UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a39/ LA - ru ID - SEMR_2020_17_a39 ER -
%0 Journal Article %A A. V. Il'ev %A V. P. Il'ev %T On axiomatizability of the class of finitary matroids and decidability of their universal theory %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1730-1740 %V 17 %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a39/ %G ru %F SEMR_2020_17_a39
A. V. Il'ev; V. P. Il'ev. On axiomatizability of the class of finitary matroids and decidability of their universal theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1730-1740. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a39/
[1] M. Aigner, Combinatorial Theory, Mir, M., 1982 | MR
[2] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Nauka, M., 1987 | MR | Zbl
[3] A.V. Il'ev, “On axiomatizability of hereditary classes of graphs and matroids”, Sib. Electron. Math. Izv., 13 (2016), 137–147 | MR | Zbl
[4] A.V. Il'ev, V.P. Il'ev, “On axiomatizability and decidability of universal theories of hereditary classes of matroids”, Journal of Physics: Conference Series, 1210 (2019), 012056 | DOI
[5] H. Whitney, “On the abstract properties of linear dependence”, Am. J. Math., 57 (1935), 509–533 | DOI | MR | Zbl