On finite strongly critical rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1722-1729 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, some properties of strongly critical rings are investigated. It is proved that every simple finite ring and each critical ring of order $ p ^ 2 $ ($ p $ is a prime) are strongly critical. There is an example of critical ring of order 8 which is not strongly critical. It is also proved that if $ R $ is a finite ring and $ M_n (R) $ is a strongly critical ring, then $ R $ is a strongly critical ring. For rings with unity, it is proved that: 1) if $ R $ is a finite ring, $ R / J (R) = M_n (GF (q)) $ and $ J (R) $ is a strongly critical ring, then $ R $ is a strongly critical ring; 2) $R$ is strongly critical ring iff $M_n(R)$ is a strongly critical ring (for any $n\geq 1$).
Keywords: finite ring, critical ring, strongly critical ring.
@article{SEMR_2020_17_a38,
     author = {Yu. N. Maltsev and E. V. Zhuravlev},
     title = {On finite strongly critical rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1722--1729},
     year = {2020},
     volume = {17},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/}
}
TY  - JOUR
AU  - Yu. N. Maltsev
AU  - E. V. Zhuravlev
TI  - On finite strongly critical rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1722
EP  - 1729
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/
LA  - ru
ID  - SEMR_2020_17_a38
ER  - 
%0 Journal Article
%A Yu. N. Maltsev
%A E. V. Zhuravlev
%T On finite strongly critical rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1722-1729
%V 17
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/
%G ru
%F SEMR_2020_17_a38
Yu. N. Maltsev; E. V. Zhuravlev. On finite strongly critical rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1722-1729. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/

[1] Y.N. Maltsev, E.V. Zhuravlev, Lectures on the theory of associative rings, Altai State University, Barnaul, 2015

[2] I.V. L'vov, “Variety of associative rings (Part I)”, Algebra Logic, 12 (1974), 150–167 | DOI | MR | Zbl

[3] A. Tarski, “Equationally complete rings and relation algebras”, Nederl. Akad. Wet., Proc., Ser. A, 59 (1956), 39–46 | MR | Zbl

[4] Y.N. Maltsev, “Defining identities of the variety of associative rings generated by all rings of order $p^2$”, Vestnik Altai State Pedagogical Academy, 7 (2011), 15–20

[5] V.P. Elizarov, Finite rings, Gelios-ARV, M., 2006

[6] N. Jacobson, Structure of rings, AMS, Providence, 1956 | MR | Zbl

[7] Y.N. Mal'tsev, “Communications of the moscow mathematical society: The ring of matrices over a critical ring is critical”, Russian Mathematical Surveys, 39:4 (1984), 131–132 | DOI | Zbl