On finite strongly critical rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1722-1729.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, some properties of strongly critical rings are investigated. It is proved that every simple finite ring and each critical ring of order $ p ^ 2 $ ($ p $ is a prime) are strongly critical. There is an example of critical ring of order 8 which is not strongly critical. It is also proved that if $ R $ is a finite ring and $ M_n (R) $ is a strongly critical ring, then $ R $ is a strongly critical ring. For rings with unity, it is proved that: 1) if $ R $ is a finite ring, $ R / J (R) = M_n (GF (q)) $ and $ J (R) $ is a strongly critical ring, then $ R $ is a strongly critical ring; 2) $R$ is strongly critical ring iff $M_n(R)$ is a strongly critical ring (for any $n\geq 1$).
Keywords: finite ring, critical ring, strongly critical ring.
@article{SEMR_2020_17_a38,
     author = {Yu. N. Maltsev and E. V. Zhuravlev},
     title = {On finite strongly critical rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1722--1729},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/}
}
TY  - JOUR
AU  - Yu. N. Maltsev
AU  - E. V. Zhuravlev
TI  - On finite strongly critical rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1722
EP  - 1729
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/
LA  - ru
ID  - SEMR_2020_17_a38
ER  - 
%0 Journal Article
%A Yu. N. Maltsev
%A E. V. Zhuravlev
%T On finite strongly critical rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1722-1729
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/
%G ru
%F SEMR_2020_17_a38
Yu. N. Maltsev; E. V. Zhuravlev. On finite strongly critical rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1722-1729. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a38/

[1] Y.N. Maltsev, E.V. Zhuravlev, Lectures on the theory of associative rings, Altai State University, Barnaul, 2015

[2] I.V. L'vov, “Variety of associative rings (Part I)”, Algebra Logic, 12 (1974), 150–167 | DOI | MR | Zbl

[3] A. Tarski, “Equationally complete rings and relation algebras”, Nederl. Akad. Wet., Proc., Ser. A, 59 (1956), 39–46 | MR | Zbl

[4] Y.N. Maltsev, “Defining identities of the variety of associative rings generated by all rings of order $p^2$”, Vestnik Altai State Pedagogical Academy, 7 (2011), 15–20

[5] V.P. Elizarov, Finite rings, Gelios-ARV, M., 2006

[6] N. Jacobson, Structure of rings, AMS, Providence, 1956 | MR | Zbl

[7] Y.N. Mal'tsev, “Communications of the moscow mathematical society: The ring of matrices over a critical ring is critical”, Russian Mathematical Surveys, 39:4 (1984), 131–132 | DOI | Zbl