Product of Chu spaces in the category of $Chu(S-Act)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1352-1358.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary conditions for the existence of products of Chu spaces in the category $Chu(S-Act)$ over the category of S-acts are obtained. It is proved the existence of a product of Chu spaces $r_i: A_i\otimes X_i\longrightarrow D_i$ $(i\in I)$ in the category $Chu (S-Act)$ in the cases of $X_i$ are zero polygons for any $i\in I$ or $D_i$ are zero polygons for any $i\in I$.
Keywords: Chu spaces, S-Act, monoidal category, limit, functor, product.
Mots-clés : Chu construction
@article{SEMR_2020_17_a32,
     author = {A. A. Stepanova and E. E. Skurikhin and A. G. Sukhonos},
     title = {Product of {Chu} spaces in the category of $Chu(S-Act)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1352--1358},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a32/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - E. E. Skurikhin
AU  - A. G. Sukhonos
TI  - Product of Chu spaces in the category of $Chu(S-Act)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1352
EP  - 1358
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a32/
LA  - ru
ID  - SEMR_2020_17_a32
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A E. E. Skurikhin
%A A. G. Sukhonos
%T Product of Chu spaces in the category of $Chu(S-Act)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1352-1358
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a32/
%G ru
%F SEMR_2020_17_a32
A. A. Stepanova; E. E. Skurikhin; A. G. Sukhonos. Product of Chu spaces in the category of $Chu(S-Act)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1352-1358. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a32/

[1] M. Barr, *-Autonomous Categories, Lecture Notes in Math., 752, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl

[2] M. Barr, C. Wells, Category Theory for Computing Science, Prentice Hall, London, 1995 | MR | Zbl

[3] V. Gould, A.V. Mikhalev, E.A. Palyutin, A.A. Stepanova, “Model-theoretic properties of free, projective, and flat S-acts”, J. Math. Sci. New York, 164:2 (2010), 195–227 | DOI | MR | Zbl

[4] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, Walter De Gruyter, Berlin, 2000 | MR | Zbl

[5] S. MacLane, Categories for the Working mathematician, 4th corrected printing, Springer-Verlag, New York etc, 1988 | MR | Zbl

[6] V.R. Pratt, “Chu Spaces”, Lecture notes of courses, School on category theory and applications (Coimbra, Portugal, July 13–17, 1999), Textos Mat., Ser. B, 21, Universidade de Coimbra, Departamento de Matematica, Coimbra, 1999, 39–100 | MR | Zbl

[7] A.A. Stepanova, E.E. Skurihin, A.G. Sukhonos, “Category of Chu spaces over S-Act category”, Sib. Electron. Math. Izv., 14 (2017), 1220–1237 | MR | Zbl

[8] A.A. Stepanova, E.E. Skurihin, A.G. Sukhonos, “Category of Chu spaces over S-Act category”, Sib. Electron. Math. Izv., 16 (2019), 709–717 | DOI | MR | Zbl