Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a30, author = {Danila O. Revin and Andrei V. Zavarnitsine}, title = {The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1155--1164}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/} }
TY - JOUR AU - Danila O. Revin AU - Andrei V. Zavarnitsine TI - The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1155 EP - 1164 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/ LA - en ID - SEMR_2020_17_a30 ER -
%0 Journal Article %A Danila O. Revin %A Andrei V. Zavarnitsine %T The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1155-1164 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/ %G en %F SEMR_2020_17_a30
Danila O. Revin; Andrei V. Zavarnitsine. The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1155-1164. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/
[1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[2] É. Galois, “Mémoire sur les conditions de résolubilité des équations par radicaux”, J. Math. Pures Appl., 11 (1846), 417–433
[3] W. Guo, D.O. Revin, “Classification and properties of the $\pi$-submaximal subgroups in minimal nonsolvable groups”, Bull. Math. Sci., 8:2 (2018), 325–351 | DOI | MR | Zbl
[4] W. Guo, D.O. Revin, “On maximal and submaximal ${\mathfrak X}$-subgroups”, Algebra Logic, 57:1 (2018), 9–28 | DOI | MR | Zbl
[5] W. Guo, D.O. Revin, “Pronormality and submaximal ${\mathfrak X}$-subgroups on finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl
[6] I.M. Isaacs, Finite group theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008 | DOI | MR | Zbl
[7] C.M. Jordan, “Commentaire sur le Mémoire de Galois”, Comptes rendus, 60 (1865), 770–774 | MR
[8] C.M. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris, 1870 | MR
[9] D.O. Revin, “Submaximal and Epimaximal $\mathfrak{X}$-Subgroups”, Algebra Logic, 58:6 (2020), 475–479 | DOI | MR | Zbl
[10] D. Revin, S. Skresanov, A. Vasil'ev, “The Wielandt–Hartley theorem for submaximal $\mathfrak{X}$-subgroups”, Monatsh. Math., 193:1 (2020), 143–155 | DOI | MR | Zbl
[11] D.O. Revin, A.V. Zavarnitsine, “On the behavior of $\pi$-submaximal subgroups under homomorphisms”, Commun. Algebra, 48:2 (2020), 702–707 | DOI | MR | Zbl
[12] D.J.S. Robinson, “Applications of cohomology to the theory of groups”, Groups. Conf. (St. Andrews 1981), Lond. Math. Soc. Lect. Note Ser., 71, 1982, 46–80 | MR | Zbl
[13] M. Suzuki, Group theory II, Grundlehren der Mathematischen Wissenschaften, 248, Springer-Verlag, New York etc., 1986 | DOI | MR | Zbl
[14] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, Finite groups, Santa Cruz Conf. (1979), Proc. Symp. Pure Math., 37, 1980, 161–173 | DOI | MR | Zbl
[15] H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung”, Mathematische Werke. Mathematical works, v. 1, Group theory, eds. Bertram Huppert, Hans Schneider, 1994, 607–655 | MR | Zbl
[16] H. Wielandt, Mathematical Diary XVII, available in photocopied and transcribed form at , 1980 https://www3.math.tu-berlin.de/numerik/Wielandt/index_en.html