The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1155-1164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the extent to which constructing the inductive theory of $\mathfrak{X}$-submaximal subgroups is possible. To this end, we study the behavior of $\mathfrak{X}$-submaximal subgroups under homomorphisms with $\mathfrak{X}$-separable kernels and construct examples where such behavior is irregular.
Keywords: $\mathfrak{X}$-maximal subgroup, $\mathfrak{X}$-submaximal subgroup, complete class, $\pi$-separable group.
@article{SEMR_2020_17_a30,
     author = {Danila O. Revin and Andrei V. Zavarnitsine},
     title = {The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1155--1164},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/}
}
TY  - JOUR
AU  - Danila O. Revin
AU  - Andrei V. Zavarnitsine
TI  - The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1155
EP  - 1164
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/
LA  - en
ID  - SEMR_2020_17_a30
ER  - 
%0 Journal Article
%A Danila O. Revin
%A Andrei V. Zavarnitsine
%T The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1155-1164
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/
%G en
%F SEMR_2020_17_a30
Danila O. Revin; Andrei V. Zavarnitsine. The behavior of $\pi$-submaximal subgroups under homomorphisms with $\pi$-separable kernels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1155-1164. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a30/

[1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] É. Galois, “Mémoire sur les conditions de résolubilité des équations par radicaux”, J. Math. Pures Appl., 11 (1846), 417–433

[3] W. Guo, D.O. Revin, “Classification and properties of the $\pi$-submaximal subgroups in minimal nonsolvable groups”, Bull. Math. Sci., 8:2 (2018), 325–351 | DOI | MR | Zbl

[4] W. Guo, D.O. Revin, “On maximal and submaximal ${\mathfrak X}$-subgroups”, Algebra Logic, 57:1 (2018), 9–28 | DOI | MR | Zbl

[5] W. Guo, D.O. Revin, “Pronormality and submaximal ${\mathfrak X}$-subgroups on finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl

[6] I.M. Isaacs, Finite group theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008 | DOI | MR | Zbl

[7] C.M. Jordan, “Commentaire sur le Mémoire de Galois”, Comptes rendus, 60 (1865), 770–774 | MR

[8] C.M. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris, 1870 | MR

[9] D.O. Revin, “Submaximal and Epimaximal $\mathfrak{X}$-Subgroups”, Algebra Logic, 58:6 (2020), 475–479 | DOI | MR | Zbl

[10] D. Revin, S. Skresanov, A. Vasil'ev, “The Wielandt–Hartley theorem for submaximal $\mathfrak{X}$-subgroups”, Monatsh. Math., 193:1 (2020), 143–155 | DOI | MR | Zbl

[11] D.O. Revin, A.V. Zavarnitsine, “On the behavior of $\pi$-submaximal subgroups under homomorphisms”, Commun. Algebra, 48:2 (2020), 702–707 | DOI | MR | Zbl

[12] D.J.S. Robinson, “Applications of cohomology to the theory of groups”, Groups. Conf. (St. Andrews 1981), Lond. Math. Soc. Lect. Note Ser., 71, 1982, 46–80 | MR | Zbl

[13] M. Suzuki, Group theory II, Grundlehren der Mathematischen Wissenschaften, 248, Springer-Verlag, New York etc., 1986 | DOI | MR | Zbl

[14] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, Finite groups, Santa Cruz Conf. (1979), Proc. Symp. Pure Math., 37, 1980, 161–173 | DOI | MR | Zbl

[15] H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung”, Mathematische Werke. Mathematical works, v. 1, Group theory, eds. Bertram Huppert, Hans Schneider, 1994, 607–655 | MR | Zbl

[16] H. Wielandt, Mathematical Diary XVII, available in photocopied and transcribed form at , 1980 https://www3.math.tu-berlin.de/numerik/Wielandt/index_en.html