Periodic locally nilpotent groups of finite $c$-dimension
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1100-1105.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to Bryant's theorem a periodic locally nilpotent group satisfying minimal condition on centralizers is virtually nilpotent. The $c$-dimension of a group is the supremum of lengths of chains of centralizers. We bound the index of the nilpotent radical of a locally nilpotent $p$-group of finite $c$-dimension $k$ in terms of $k$ and $p$.
Keywords: periodic locally nilpotent group, locally nilpotent $p$-group.
Mots-clés : $c$-dimension
@article{SEMR_2020_17_a27,
     author = {A. A. Buturlakin and I. E. Devyatkova},
     title = {Periodic locally nilpotent groups of finite $c$-dimension},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1100--1105},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - I. E. Devyatkova
TI  - Periodic locally nilpotent groups of finite $c$-dimension
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1100
EP  - 1105
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/
LA  - en
ID  - SEMR_2020_17_a27
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A I. E. Devyatkova
%T Periodic locally nilpotent groups of finite $c$-dimension
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1100-1105
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/
%G en
%F SEMR_2020_17_a27
A. A. Buturlakin; I. E. Devyatkova. Periodic locally nilpotent groups of finite $c$-dimension. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1100-1105. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/

[1] R.M. Bryant, “Groups with the minimal condition on centralizers”, J. Algebra, 60 (1979), 371–383 | DOI | MR | Zbl

[2] R.M. Bryant, B. Hartley, “Periodic locally soluble groups with the minimal condition on centralizers”, J. Algebra, 61 (1979), 328–334 | DOI | MR | Zbl

[3] I.M. Isaacs, Finite Group Theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008 | DOI | MR | Zbl

[4] E.I. Khukhro, “On solubility of groups with bounded centralizer chains”, Glas. Math. J., 51:1 (2009), 49–54 | DOI | MR | Zbl

[5] A. Myasnikov, P. Shumyatsky, “Discriminating groups and c-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl