Periodic locally nilpotent groups of finite $c$-dimension
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1100-1105
Cet article a éte moissonné depuis la source Math-Net.Ru
According to Bryant's theorem a periodic locally nilpotent group satisfying minimal condition on centralizers is virtually nilpotent. The $c$-dimension of a group is the supremum of lengths of chains of centralizers. We bound the index of the nilpotent radical of a locally nilpotent $p$-group of finite $c$-dimension $k$ in terms of $k$ and $p$.
Keywords:
periodic locally nilpotent group, locally nilpotent $p$-group.
Mots-clés : $c$-dimension
Mots-clés : $c$-dimension
@article{SEMR_2020_17_a27,
author = {A. A. Buturlakin and I. E. Devyatkova},
title = {Periodic locally nilpotent groups of finite $c$-dimension},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1100--1105},
year = {2020},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/}
}
A. A. Buturlakin; I. E. Devyatkova. Periodic locally nilpotent groups of finite $c$-dimension. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1100-1105. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a27/
[1] R.M. Bryant, “Groups with the minimal condition on centralizers”, J. Algebra, 60 (1979), 371–383 | DOI | MR | Zbl
[2] R.M. Bryant, B. Hartley, “Periodic locally soluble groups with the minimal condition on centralizers”, J. Algebra, 61 (1979), 328–334 | DOI | MR | Zbl
[3] I.M. Isaacs, Finite Group Theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008 | DOI | MR | Zbl
[4] E.I. Khukhro, “On solubility of groups with bounded centralizer chains”, Glas. Math. J., 51:1 (2009), 49–54 | DOI | MR | Zbl
[5] A. Myasnikov, P. Shumyatsky, “Discriminating groups and c-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl