On sufficient conditions for $Q$-universality
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1043-1051.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a quasivariety $\mathbf{K}$ contains a $\mathrm{B}^\ast$-class then $\mathbf{K}$ satisfies sufficient conditions for $Q$-universality found by V. A. Gorbunov.
Keywords: $\mathrm{B}$-class, quasivariety, $Q$-universal.
@article{SEMR_2020_17_a24,
     author = {M. V. Schwidefsky},
     title = {On sufficient conditions for $Q$-universality},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1043--1051},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a24/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - On sufficient conditions for $Q$-universality
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1043
EP  - 1051
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a24/
LA  - en
ID  - SEMR_2020_17_a24
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T On sufficient conditions for $Q$-universality
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1043-1051
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a24/
%G en
%F SEMR_2020_17_a24
M. V. Schwidefsky. On sufficient conditions for $Q$-universality. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1043-1051. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a24/

[1] M.E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[2] A. Basheyeva, A.M. Nurakunov, M.V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. III”, Sib. Electron. Math. Izv., 14 (2017), 252–263 | MR | Zbl

[3] G. Birkhoff, “Universal algebra”, Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[4] A.I. Budkin, “Independent axiomatizability of quasivarieties of groups”, Math. Notes, 31:6 (1982), 413–417 | DOI | MR | Zbl

[5] A.I. Budkin, “Independent axiomatizability of quasivarieties of generalized solvable groups”, Algebra Logic, 25:3 (1986), 155–166 | DOI | MR | Zbl

[6] A.I. Budkin, “Independent axiomatizability of quasi-varieties of solvable groups”, Algebra Logic, 30:2 (1991), 81–100 | DOI | MR | Zbl

[7] A.I. Budkin, “On the $\omega$-independence of quasivarieties of nilpotent groups”, Sib. Electron. Mat. Izv., 16 (2019), 516–522 | DOI | MR | Zbl

[8] A.I. Budkin, “$\omega$-Independent bases for quasivarieties of torsion-free groups”, Algebra Logic, 58:3 (2019), 214–223 | DOI | Zbl

[9] W. Dziobiak, “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Univers., 22:2–3 (1986), 205–214 | DOI | MR | Zbl

[10] V.A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Plenum, New York, 1998 | MR | Zbl

[11] V.A. Gorbunov, “Structure of lattices of varieties and lattices of quasivarieties: similarity and difference. II”, Algebra Logic, 34:4 (1995), 203–218 | DOI | MR | Zbl

[12] A.V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras. II”, Sib. Electron. Mat. Izv., 13 (2016), 388–394 | MR | Zbl

[13] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. I: Independent axiomatizability”, Algebra Logic, 57:6 (2019), 445–462 | DOI | Zbl

[14] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. II. Undecidable problems”, Algebra Logic, 58:2 (2019), 123–136 | DOI | Zbl

[15] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “On representation of finite lattices”, Algebra Univers., 80:1 (2019), 15 | DOI | MR | Zbl

[16] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “On the complexity of the lattices of subvarieties and congruences”, Int. J. Algebra Comput. (to appear) | MR

[17] A.V. Kravchenko, M.V. Schwidefsky, “On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras”, Sib. Electron. Math. Izv., 17 (2020), 753–768 | DOI | MR | Zbl

[18] A.V. Kravchenko, A.V. Yakovlev, “Quasivarieties of graphs and independent axiomatizability”, Sib. Adv. Math., 28:1 (2018), 53–59 | DOI | MR | Zbl

[19] A.I. Maltsev, “Some questions bordering on algebra and mathematical logic”, Tr. Mezhdunarod. Kongr. Mat. (Moskva, 1966), Mir, M., 1968, 217–231 | Zbl

[20] A.M. Nurakunov, “Unreasonable lattices of quasivarieties”, Int. J. Algebra Comput., 22:3 (2012), 1250006, 1–17 | DOI | MR | Zbl

[21] A.M. Nurakunov, “Quasivariety lattices of pointed Abelian groups”, Algebra Logic, 53:3 (2014), 238–257 | DOI | MR | Zbl

[22] M.V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Univers., 21:2–3 (1985), 172–180 | DOI | MR | Zbl

[23] M.V. Schwidefsky, “On complexity of quasivariety lattices”, Algebra Logic, 54:3 (2015), 245–257 | DOI | MR | Zbl

[24] M. V. Schwidefsky, “Existence of independent quasi-equational bases”, Algebra Logic, 58:6 (2020), 514–537 | DOI | Zbl