Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a19, author = {E. N. Poroshenko}, title = {On universal equivalence of partially commutative {Lie} algebras defined by graphs without triangles and squares and with no isolated vertices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {933--953}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/} }
TY - JOUR AU - E. N. Poroshenko TI - On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 933 EP - 953 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/ LA - ru ID - SEMR_2020_17_a19 ER -
%0 Journal Article %A E. N. Poroshenko %T On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 933-953 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/ %G ru %F SEMR_2020_17_a19
E. N. Poroshenko. On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 933-953. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/