Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a19, author = {E. N. Poroshenko}, title = {On universal equivalence of partially commutative {Lie} algebras defined by graphs without triangles and squares and with no isolated vertices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {933--953}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/} }
TY - JOUR AU - E. N. Poroshenko TI - On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 933 EP - 953 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/ LA - ru ID - SEMR_2020_17_a19 ER -
%0 Journal Article %A E. N. Poroshenko %T On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 933-953 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/ %G ru %F SEMR_2020_17_a19
E. N. Poroshenko. On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 933-953. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/
[1] P. Cartier, D. Foata, Problems combinatorics de computation et rearrangements, Lecture Notes in Mathematics, 85, Springer-Verlag, Berlin, 1969 | DOI | MR | Zbl
[2] H. Servatius, “Automorphisms of graph groups”, J. Algebra, 126:1 (1989), 34–60 | DOI | MR | Zbl
[3] G. Duchamp, D. Krob, “The lower central ceries of the free partially commutative group”, Semigroup Forum, 45:3 (1992), 385–394 | DOI | MR | Zbl
[4] A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov, “Parabolic and quasiparabolic subgroups of free partially commutative groups”, J. Algebra, 318:2 (2007), 918–932 | DOI | MR | Zbl
[5] E.I. Timoshenko, “A Mal'tsev basis for a partially commutative nilpotent metabelian group”, Algebra Logic, 50:5 (2011), 439–446 | DOI | MR | Zbl
[6] Ch.K. Gupta, E.I. Timoshenko, “Partially commutative metabelian groups: centralizers and elementary equivelence”, Algebra Logic, 48:3 (2009), 173–192 | DOI | MR | Zbl
[7] E.I. Timoshenko, “Universal equivalence of partially commutative metabelian groups”, Algebra Logic, 49:2 (2010), 177–196 | DOI | MR | Zbl
[8] Ch.K. Gupta, E.I. Timoshenko, “Universal Theories for Partially Commutative Metabelian Groups”, Algebra Logic, 50:1 (2011), 1–16 | MR | Zbl
[9] K.H. Kim, F.W. Roush, “Homology of certain algebrais defined by graphs”, J. Pure Appl. Algebra, 17:2 (1980), 179–186 | DOI | MR | Zbl
[10] K.H. Kim, L. Makar-Limanov, J. Neggers, F.W. Roush, “Graph algebras”, J. Algebra, 64 (1980), 46–51 | DOI | MR | Zbl
[11] G. Duchamp, D. Krob, “The Free Partially Commutative Lie Algebra: Bases and Ranks”, Adv. Math., 95:1 (1992), 92–126 | DOI | MR | Zbl
[12] E.N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra Logic, 50:5 (2011), 405–417 | DOI | MR | Zbl
[13] E.N. Poroshenko, “Centralizers in partially commutative Lie algebras”, Algebra Logic, 51:4 (2012), 351–371 | DOI | MR | Zbl
[14] E. Poroshenko, E. Timoshenko, “Universal Equivalence of Partially Commutative Metabelian Lie Algebras”, J. Algebra, 384 (2013), 143–168 | DOI | MR | Zbl
[15] E.N. Poroshenko, “On universal equivalence of partially commutative metabelian Lie algebras”, Comm. Algebra, 43:2 (2015), 746–762 | DOI | MR | Zbl
[16] E.N. Poroshenko, “Universal equivalence of partially commutative Lie algebras”, Algebra Logic, 56:2 (2017), 133–148 | DOI | MR | Zbl
[17] E.N. Poroshenko, “Universal equivalence of some countably generated partially commutative structures”, Sib. Math. J., 58:2 (2017), 296–304 | DOI | MR | Zbl
[18] M. Hall, “A basis for free Lie rings and higher commutators in free groups”, Proc. Am. Math. Soc., 1 (1950), 575–581 | DOI | MR | Zbl
[19] A.I. Shirshov, “Subalgebras of free Lie algebras”, Math. sb., 33(75):2 (1953), 441–452 | MR | Zbl
[20] A.I. Shirshov, “On Free Lie Rings”, Math. sb., 45(87):2 (1958), 113–122 | MR | Zbl