On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 933-953

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a criterion of universal equivalence for partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices is found.
Keywords: partially commutative Lie algebra, universal theory.
@article{SEMR_2020_17_a19,
     author = {E. N. Poroshenko},
     title = {On universal equivalence of partially commutative {Lie} algebras defined by graphs without triangles and squares and with no isolated vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {933--953},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/}
}
TY  - JOUR
AU  - E. N. Poroshenko
TI  - On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 933
EP  - 953
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/
LA  - ru
ID  - SEMR_2020_17_a19
ER  - 
%0 Journal Article
%A E. N. Poroshenko
%T On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 933-953
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/
%G ru
%F SEMR_2020_17_a19
E. N. Poroshenko. On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 933-953. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a19/