Combinatorial problems connected with P. Hall's collection process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 873-889
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M_1, \ldots, M_r$ be nonempty subsets of any totally ordered set. Imposing some restricitons on these subsets, we find an expression for the number of elements $(\lambda_1, \ldots, \lambda_r) \in M_1 \times \cdots \times M_r$ that satisfy the condition $C$, where $C$ is a propositional formula consisting of such conditions as $\lambda_i=\lambda_j$, $\lambda_i<\lambda_j$, $i,j \in \overline{1,r}$.
Keywords:
collection process, Cartesian product, binary weight.
@article{SEMR_2020_17_a15,
author = {V. M. Leontiev},
title = {Combinatorial problems connected with {P.~Hall's} collection process},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {873--889},
year = {2020},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a15/}
}
V. M. Leontiev. Combinatorial problems connected with P. Hall's collection process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 873-889. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a15/
[1] P. Hall, “A contribution to the theory of groups of prime-power order”, Proc. London Math. Soc., 36 (1933), 29–95 | MR | Zbl
[2] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959 | MR | Zbl
[3] E. Krause, “On the collection process”, Proc. Amer. Math. Soc., 15 (1964), 497–504 | DOI | MR | Zbl
[4] S. Kolesnikov, V. Leontiev, G. Egorychev, “Two collection formulas”, Journal of Group Theory, 2020 (to appear) | DOI | MR
[5] V.M. Leontiev, “On Divisibility of Some Sums of Binomial Coefficients Arising From Collection Formulas”, Journal of Siberian Federal University. Mathematics Physics, 11:5 (2018), 603–614 | DOI | MR