The~works of~the S.K.~Godunov seminar on~hyperbolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. А.59-А.67

Voir la notice de l'article provenant de la source Math-Net.Ru

In the middle of 1970s at Novosibirsk State University the S. K. Godunov seminar on hyperbolic equations started its work. The article describes the works of the participants on hyperbolic equations. The main interest was concentrated around two problems. The first is the reduction of a high-order Petrovskiĭ hyperbolic equation to a first-order Friedrichs hyperbolic symmetric system. The second probem is that if a boundary value problem is posed for a hyperbolic equation then it is required to reduce it to a symmetric system so that the posed boundary condition be dissipative.
Keywords: wave equation, mixed problem, symmetric hyperbolic system, dissipative boundary condition.
@article{SEMR_2020_17_a145,
     author = {V. M. Gordienko},
     title = {The~works of~the {S.K.~Godunov} seminar on~hyperbolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {{\CYRA}.59--{\CYRA}.67},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/}
}
TY  - JOUR
AU  - V. M. Gordienko
TI  - The~works of~the S.K.~Godunov seminar on~hyperbolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - А.59
EP  - А.67
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/
LA  - ru
ID  - SEMR_2020_17_a145
ER  - 
%0 Journal Article
%A V. M. Gordienko
%T The~works of~the S.K.~Godunov seminar on~hyperbolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P А.59-А.67
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/
%G ru
%F SEMR_2020_17_a145
V. M. Gordienko. The~works of~the S.K.~Godunov seminar on~hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. А.59-А.67. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/