Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a145, author = {V. M. Gordienko}, title = {The~works of~the {S.K.~Godunov} seminar on~hyperbolic equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {{\CYRA}.59--{\CYRA}.67}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/} }
V. M. Gordienko. The~works of~the S.K.~Godunov seminar on~hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. А.59-А.67. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/
[1] S.K. Godunov, “The symmetrization problem for hyperpolic operators”, Uspekhi. Mat. Nauk, 38:5 (1983), 169 | MR
[2] S.K. Godunov, V.I. Kostin, “Reduction of a hyperbolic equation to a symmetric hyperbolic system in the case of two space variables”, Sib. Math. J., 21:6 (1980), 755–768 | MR | Zbl
[3] V.I. Kostin, “On symmetrization of hyperbolic operators”, Correct Boundary Value Problems for Non-Classical Equations of Mathematical Physics, Collect. Artic., Novosibirsk, 1980, 112–116 | Zbl
[4] T.Yu. Mikhajlova, “Symmetrization of invariant hyperbolic equations”, Sov. Math., Dokl., 27 (1983) | MR | Zbl
[5] V.V. Ivanov, “Strictly hyperbolic operators not admitting hyperbolic symmetrization”, Partial Differential Equations, Proc. Int. Conf. (Novosibirsk), Nauka, Novosibirsk, 1983, 84–93 | MR
[6] A.V. Tyshchenko, “A basis of solutions of the homogeneous Hörmander identity”, Sib. Math. J., 26:1 (1985), 117–124 | MR | Zbl
[7] S.K. Godunov, V.M. Gordienko, “A mixed problem for the wave equation”, Tr. Semin. S.L. Soboleva, 2, 1977, 5–31 | MR | Zbl
[8] Gordienko C. R., V.M. Gordienko, “Un problème mixte pour l'équation vectorielle des ondes: Cas de dissipation de l'énergie; Cas mal posés”, C. R. Acad. Sci., Paris, Sér. A, 288 (1979), 547–550 | MR | Zbl
[9] V.M. Gordienko, “On well-posedness of a mixed problem for the wave equation”, Sib. Èlektron. Mat. Izv., 7:2010, 130–138
[10] N.G. Marchuk, “On the existence of solutions of a mixed problem for the vector wave equation”, Sov. Math., Dokl., 21:1980, 785–788 | MR | Zbl
[11] S.K. Godunov, Equations of Mathematical Physics, Nauka, M., 1979 (in Russian) | MR
[12] N.G. Marchuk, “The correctness of the formulation of a mixed problem for the vector wave equation”, Differ. Equations, 20:1984, 627–631 | MR | Zbl
[13] V.M. Gordienko, “Symmetrization of a mixed problem for a hyperbolic equation of second order with two spatial variables”, Sib. Math. J., 22:2 (1981), 231–248 | MR | Zbl
[14] N.G. Marchuk, “Existence of a solution of a mixed problem for a hyperbolic vector equation of second order”, Sib. Math. J., 23:1 (1982), 53–64 | MR | Zbl
[15] O.A. Bondarenko, V.M. Gordienko, “Symmetrization of second-order vector hyperbolic equation with two space variables”, Sib. Math. J., 27:3 (1986), 302–312 | MR | Zbl
[16] A.N. Malyshev, “Mixed problem for second-order hyperbolic equation with first-order complex boundary condition”, Sib. Math. J., 24:6 (1983), 906–923 | MR | Zbl
[17] V.M. Gordienko, “Hyperbolic systems equivalent to the wave equation”, Sib. Mat. Zh., 50:1 (2009), 19–27 | MR | Zbl
[18] V.M. Gordienko, “Friedrichs systems for the three-dimensional wave equation”, Sib. Math. J., 51:6 (2010), 1013–1027 | MR | Zbl
[19] V.M. Gordienko, “Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation”, Sib. Èlektron. Mat. Izv., 10:2013, 311–323 | MR | Zbl
[20] V.M. Gordienko, “Dissipative energy integrals in a mixed problem for the wave equation”, Mat. Zamet. YAGU, 20:2 (2013), 23–33 | Zbl