The~works of~the S.K.~Godunov seminar on~hyperbolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. А.59-А.67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the middle of 1970s at Novosibirsk State University the S. K. Godunov seminar on hyperbolic equations started its work. The article describes the works of the participants on hyperbolic equations. The main interest was concentrated around two problems. The first is the reduction of a high-order Petrovskiĭ hyperbolic equation to a first-order Friedrichs hyperbolic symmetric system. The second probem is that if a boundary value problem is posed for a hyperbolic equation then it is required to reduce it to a symmetric system so that the posed boundary condition be dissipative.
Keywords: wave equation, mixed problem, symmetric hyperbolic system, dissipative boundary condition.
@article{SEMR_2020_17_a145,
     author = {V. M. Gordienko},
     title = {The~works of~the {S.K.~Godunov} seminar on~hyperbolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {{\CYRA}.59--{\CYRA}.67},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/}
}
TY  - JOUR
AU  - V. M. Gordienko
TI  - The~works of~the S.K.~Godunov seminar on~hyperbolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - А.59
EP  - А.67
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/
LA  - ru
ID  - SEMR_2020_17_a145
ER  - 
%0 Journal Article
%A V. M. Gordienko
%T The~works of~the S.K.~Godunov seminar on~hyperbolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P А.59-А.67
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/
%G ru
%F SEMR_2020_17_a145
V. M. Gordienko. The~works of~the S.K.~Godunov seminar on~hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. А.59-А.67. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a145/

[1] S.K. Godunov, “The symmetrization problem for hyperpolic operators”, Uspekhi. Mat. Nauk, 38:5 (1983), 169 | MR

[2] S.K. Godunov, V.I. Kostin, “Reduction of a hyperbolic equation to a symmetric hyperbolic system in the case of two space variables”, Sib. Math. J., 21:6 (1980), 755–768 | MR | Zbl

[3] V.I. Kostin, “On symmetrization of hyperbolic operators”, Correct Boundary Value Problems for Non-Classical Equations of Mathematical Physics, Collect. Artic., Novosibirsk, 1980, 112–116 | Zbl

[4] T.Yu. Mikhajlova, “Symmetrization of invariant hyperbolic equations”, Sov. Math., Dokl., 27 (1983) | MR | Zbl

[5] V.V. Ivanov, “Strictly hyperbolic operators not admitting hyperbolic symmetrization”, Partial Differential Equations, Proc. Int. Conf. (Novosibirsk), Nauka, Novosibirsk, 1983, 84–93 | MR

[6] A.V. Tyshchenko, “A basis of solutions of the homogeneous Hörmander identity”, Sib. Math. J., 26:1 (1985), 117–124 | MR | Zbl

[7] S.K. Godunov, V.M. Gordienko, “A mixed problem for the wave equation”, Tr. Semin. S.L. Soboleva, 2, 1977, 5–31 | MR | Zbl

[8] Gordienko C. R., V.M. Gordienko, “Un problème mixte pour l'équation vectorielle des ondes: Cas de dissipation de l'énergie; Cas mal posés”, C. R. Acad. Sci., Paris, Sér. A, 288 (1979), 547–550 | MR | Zbl

[9] V.M. Gordienko, “On well-posedness of a mixed problem for the wave equation”, Sib. Èlektron. Mat. Izv., 7:2010, 130–138

[10] N.G. Marchuk, “On the existence of solutions of a mixed problem for the vector wave equation”, Sov. Math., Dokl., 21:1980, 785–788 | MR | Zbl

[11] S.K. Godunov, Equations of Mathematical Physics, Nauka, M., 1979 (in Russian) | MR

[12] N.G. Marchuk, “The correctness of the formulation of a mixed problem for the vector wave equation”, Differ. Equations, 20:1984, 627–631 | MR | Zbl

[13] V.M. Gordienko, “Symmetrization of a mixed problem for a hyperbolic equation of second order with two spatial variables”, Sib. Math. J., 22:2 (1981), 231–248 | MR | Zbl

[14] N.G. Marchuk, “Existence of a solution of a mixed problem for a hyperbolic vector equation of second order”, Sib. Math. J., 23:1 (1982), 53–64 | MR | Zbl

[15] O.A. Bondarenko, V.M. Gordienko, “Symmetrization of second-order vector hyperbolic equation with two space variables”, Sib. Math. J., 27:3 (1986), 302–312 | MR | Zbl

[16] A.N. Malyshev, “Mixed problem for second-order hyperbolic equation with first-order complex boundary condition”, Sib. Math. J., 24:6 (1983), 906–923 | MR | Zbl

[17] V.M. Gordienko, “Hyperbolic systems equivalent to the wave equation”, Sib. Mat. Zh., 50:1 (2009), 19–27 | MR | Zbl

[18] V.M. Gordienko, “Friedrichs systems for the three-dimensional wave equation”, Sib. Math. J., 51:6 (2010), 1013–1027 | MR | Zbl

[19] V.M. Gordienko, “Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation”, Sib. Èlektron. Mat. Izv., 10:2013, 311–323 | MR | Zbl

[20] V.M. Gordienko, “Dissipative energy integrals in a mixed problem for the wave equation”, Mat. Zamet. YAGU, 20:2 (2013), 23–33 | Zbl