Estimates of the norms of derivatives in~the~one- and multidimensional cases
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 865-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multiplicative inequalities of the Kolmogorov type for the norms of the intermediate derivatives of a function through the norms of the function itself and its highest derivative in various Lebesgue spaces for all kinds of one-dimensional areas. Some estimates of the constants in the inequalities in these spaces are established and the asymptotic behavior of such constants is given as the orders of both the highest and intermediate derivatives grow infinitely. In addition, we obtain an estimate for the norms of the mixed derivatives of a function in terms of the norms of the derivatives with respect to each variable separately in different Lebesgue spaces for the case of the multidimensional torus. The results obtained are of independent interest and also can be used in solving various problems of mathematical physics. This in particular applies to problems in which theorems substantially involve embeddings of the corresponding function spaces.
Keywords: space, function, inequality, estimate, asymptotics, infinity, intermediate, mixed, derivative.
Mots-clés : domain, norm
@article{SEMR_2020_17_a135,
     author = {G. S. Balashova},
     title = {Estimates of the norms of derivatives in~the~one- and multidimensional cases},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {865--872},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a135/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - Estimates of the norms of derivatives in~the~one- and multidimensional cases
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 865
EP  - 872
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a135/
LA  - en
ID  - SEMR_2020_17_a135
ER  - 
%0 Journal Article
%A G. S. Balashova
%T Estimates of the norms of derivatives in~the~one- and multidimensional cases
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 865-872
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a135/
%G en
%F SEMR_2020_17_a135
G. S. Balashova. Estimates of the norms of derivatives in~the~one- and multidimensional cases. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 865-872. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a135/

[1] Yu.A. Dubinskii, “Limits of Banach spaces. Embedding theorem. Applications to Sobolev spaces of infinite order”, Mat. Sb., N. Ser., 110(152):3 (1979), 428–439 | MR | Zbl

[2] A.N. Kolmogorov, “On inequalities between upper bounds of consecutive derivatives of an arbitrary function on an infinite interval”, Moskov. Gos. Univ., Uchenye Zap., 30 (1939), 3–16 | MR | Zbl

[3] G.G. Magaril-Il'yaev, V.M. Tikhomirov, “Kolmogorov-type inequalities for derivatives”, Sb. Math., 188:12 (1997), 73–106 | DOI | MR | Zbl

[4] S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications, Gauthier-Villars XIV, Paris, 1952 | MR | Zbl

[5] T. Bang, “Une inégalité de Kolmogoroff et les fonctions presque-périodiques”, Danske Vid. Selsk., Mat.-Fys. Medd., 19:4 (1941), 1–28 | MR | Zbl

[6] A.A. Ligun, “Exact inequalities between the best approximations and moduli of continuity of periodic functions”, Studies on modern problems of summation and approximations of functions, 4, Dnepropetrovsk, 1973, 61–65

[7] I. Stein, Singular integrals and differential properties of functions, Mir, M., 1973 | MR | Zbl

[8] A. Gorny, “Contribution à l'étude des fonctions derivables d'une variable réelle”, Acta Math., 71 (1939), 317–358 | DOI | MR | Zbl

[9] S.B. Stechkin, “Inequalities between the upper bounds of the derivatives of an arbitrary function on the half-line”, Math. notes, 1 (1967), 442–447 | DOI | MR | Zbl

[10] V.I. Burenkov, “On sharp constants in inequalities for the norms of intermediate derivatives on a finite interval. II”, Proc. Steklov Inst. Math., 173 (1986), 39–50 | MR | Zbl

[11] N.P. Kuptsov, “Kolmogorov estimates for derivatives in $L_2(0;\infty)$”, Trudy Mat. Inst. Steklov., 138, 1975, 94–117 | MR | Zbl

[12] V.N. Gabushin, “Inequalities for the norms of functions and its derivatives in metric $L_p$”, Math. notes, 1:3 (1967), 194–198 | DOI | MR | Zbl

[13] A. Zygmund, Trigonometric series, v. II, Mir, M., 1965 | MR | Zbl

[14] G. Hardy, D. Littlewood, G. Polia, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | Zbl