On an analog of the Binet integral representation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 840-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an analog of the Binet integral representation, which is essential for obtaining the functional equation for the classical Riemann zeta-function.
Keywords: integral representation
Mots-clés : Binet formula, interpolation problem.
@article{SEMR_2020_17_a134,
     author = {V. I. Kuzovatov and A. M. Kytmanov},
     title = {On an analog of the {Binet} integral representation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {840--852},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a134/}
}
TY  - JOUR
AU  - V. I. Kuzovatov
AU  - A. M. Kytmanov
TI  - On an analog of the Binet integral representation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 840
EP  - 852
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a134/
LA  - en
ID  - SEMR_2020_17_a134
ER  - 
%0 Journal Article
%A V. I. Kuzovatov
%A A. M. Kytmanov
%T On an analog of the Binet integral representation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 840-852
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a134/
%G en
%F SEMR_2020_17_a134
V. I. Kuzovatov; A. M. Kytmanov. On an analog of the Binet integral representation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 840-852. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a134/

[1] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927 | MR | Zbl

[2] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 | MR | Zbl

[3] I.M. Gel'fand, B.M. Levitan, “On a Simple Identity for Eigenvalues of a Second Order Differential Operator”, Sov. Phys. Dokl., 88:4 (1953), 593–596 | Zbl

[4] L.A. Dikii, “The Zeta-Function of an Ordinary Differential Equation on a Finite Interval”, Izv. Akad. Nauk SSSR Ser. Mat., 19:4 (1955), 187–200 | MR | Zbl

[5] L.A. Dikii, “Trace Formulas for Sturm-Liouville Differential Operators”, Uspekhi Mat. Nauk, 13:3 (1958), 111–143 | MR | Zbl

[6] V.B. Lidskii, V.A. Sadovnichii, “Regularized Sums of Zeros of a Class of Entire Functions”, Funkts. Anal. Prilozh., 1:2 (1967), 52–59 | MR | Zbl

[7] S.A. Smagin, M.A. Shubin, “On the Zeta-Function of a Transversally Elliptic Operator”, Russ. Math. Surv., 39:2 (1984), 201–202 | DOI | MR | Zbl

[8] A.M. Kytmanov, S.G. Myslivets, “On the Zeta-Function of Systems of Nonlinear Equations”, Sib. Mat. J., 48:5 (2007), 863–870 | DOI | MR | Zbl

[9] V.I. Kuzovatov, A.A. Kytmanov, “On the Zeta-Function of Zeros of Some Class of Entire Functions”, J. Siberian Federal Univ. Math. Phys., 7:4 (2014), 489–499 | DOI

[10] V.I. Kuzovatov, A.M. Kytmanov, “On an Analog of the Plan's Formula”, J. Contemp. Math. Anal., Armen. Acad. Sci., 53:3 (2018), 139–146 | MR | Zbl

[11] V.I. Kuzovatov, “Generalization of the Plana Formula”, Russ. Math., 62:5 (2018), 34–43 | DOI | MR | Zbl

[12] L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin, 1955 | MR | Zbl

[13] B.Ja. Levin, Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, Providence, R.I., 1964 | DOI | MR | Zbl

[14] E.C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1939 | MR | Zbl