Exponential convexity and total positivity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 802-806
Cet article a éte moissonné depuis la source Math-Net.Ru
Class of exponentially convex functions is a sub-class of convex functions on a given interval $(a, b)$. For exponentially convex function $f(x)$ S. N. Bernstein's integral representation holds. A condition for $f(x)$, providing the kernel $K(x, y)=f(x+y)$ to be totally positive is given. New examples of totally positive kernels are obtained. For example the kernel $(x+y)^{-\alpha}$ is totally positive for any $\alpha > 0$.
Keywords:
exponential convexity, total positivity
Mots-clés : kernel.
Mots-clés : kernel.
@article{SEMR_2020_17_a132,
author = {N. O. Kotelina and A. B. Pevny},
title = {Exponential convexity and total positivity},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {802--806},
year = {2020},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a132/}
}
N. O. Kotelina; A. B. Pevny. Exponential convexity and total positivity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 802-806. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a132/
[1] S.N. Bernstein, “Sur les fonctions absolument monotones”, Acta Math., 52 (1929), 1–66 | DOI | MR | Zbl
[2] J. Jakšetić, J. Pečarić, “Exponential convexity method”, J. Convex Anal., 20:1 (2013), 181–197 | MR | Zbl
[3] Z. Sasváry, Multivariate characteristic and correlation functions, De Gruyter, 2013 | MR | Zbl
[4] J. Jakšetić, J. Pečarić, K.S. Kalamin, “Exponential convexity induced by Steffensens's inequality and positive measures”, Result. Math., 73:4 (2018), 136 | DOI | MR | Zbl
[5] A. Pinkus, Totally positive matrices, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[6] S. Karlin, W.J. Studden, Tchebycheff systems: with applications in analysis and statistics, Interscience Publ., New York etc, 1966 | MR | Zbl