Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2190-2203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multigrid methods are considered for staggered grid discretizations of the incompressible unsteady Navier-Stokes equations. After discretization and linearization of the problem, systems of linear algebraic equations with a strongly nonsymmetric matrix appear. Product-type skew-Hermitian triangular splitting and Hermitian/skew-Hermitian splitting methods are used as smoothers in the multigrid methods for solving the linear equation systems. Numerical experiments on a 2-D model problem were carried out using algebraic multigrid methods and indicated that these smoothers are robust with respect to the different Reynolds numbers.
Keywords: multigrid methods, product-type skew-Hermitian triangular splitting methods, Hermitian/skew-Hermitian splitting methods, incompressible Navier-Stokes equations.
@article{SEMR_2020_17_a124,
     author = {G. V. Muratova and T. S. Martynova and E. M. Andreeva and V. V. Bavin and Z.-Q. Wang},
     title = {Multigrid methods with {PSTS-} and {HSS-smoothers} for solving the unsteady {Navier-Stokes} equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2190--2203},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/}
}
TY  - JOUR
AU  - G. V. Muratova
AU  - T. S. Martynova
AU  - E. M. Andreeva
AU  - V. V. Bavin
AU  - Z.-Q. Wang
TI  - Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2190
EP  - 2203
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/
LA  - en
ID  - SEMR_2020_17_a124
ER  - 
%0 Journal Article
%A G. V. Muratova
%A T. S. Martynova
%A E. M. Andreeva
%A V. V. Bavin
%A Z.-Q. Wang
%T Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2190-2203
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/
%G en
%F SEMR_2020_17_a124
G. V. Muratova; T. S. Martynova; E. M. Andreeva; V. V. Bavin; Z.-Q. Wang. Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2190-2203. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/

[1] W. Hackbusch, Multigrid method and application, Springer-Verlag, Berlin, 1985 | MR | Zbl

[2] U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Academic Press, Orlando, 2001 | MR | Zbl

[3] R.D. Falgout, “An introduction to algebraic multigrid”, Computing in Science and Engineering, 8 (2006), 24–33 | DOI

[4] K. Stuben, “Algebraic multigrid (AMG): Experiences and comparisons”, Appl. Math. Comput., 13 (1983), 419–451 | DOI | MR | Zbl

[5] U.M. Yang, “Parallel algebraic multigrid methods - high performance preconditioners”, Lecture Notes in Comp. Science and Eng., 51, Springer, Berlin, 2006, 209–236 | DOI | MR | Zbl

[6] L.A. Krukier, T.S. Martynova, Z.-Z. Bai, “Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems”, J. of Comp. and Appl. Math., 232:1 (2009), 3–16 | DOI | MR | Zbl

[7] Z.-Z. Bai, L.A. Krukier, T.S. Martynova, “Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter for the highest derivative on a uniform grid”, Comput. Math. Math. Phys., 46:2 (2006), 2825–293 | DOI | MR | Zbl

[8] Z.-Z. Bai, G.H. Golub, M.K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 603–626 | DOI | MR | Zbl

[9] P. Wesseling, C.W. Oosterlee, “Geometric multigrid with applications to computational fuid dynamics”, J. Comput. Appl. Math., 128:1–2 (2001), 311–334 | DOI | MR | Zbl

[10] J.-L. Guermond, C. Migeon, G. Pineau, L. Quartapelle, “Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re=1000”, J. Fluid Mech., 450 (2002), 169–199 | DOI | MR | Zbl

[11] S. McKee, M.F. Tome, V.G. Ferreira, J.A. Cuminato, A. Castelo, F.S. Sousa, N. Mangiavacchi, “The MAC method”, Comput. Fluids, 37:8 (2008), 907–930 | DOI | MR | Zbl

[12] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, Z.-Q. Wang, “Numerical solution of the Navier-Stokes equations using multigrid methods with HSS-based and STS-based smoothers”, Symmetry, 12:2 (2020), 233 | DOI | MR

[13] Z.-Z. Bai, “Splitting iteration methods for non-Hermitian positive definite systems of linear equations”, Hokkaido Math. J., 36:4 (2007), 801–814 | DOI | MR | Zbl

[14] Z.-Z. Bai, G.H. Golub, M.K. Ng, “On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems”, Linear Algebra Appl., 428:2 (2008), 413–440 | DOI | MR | Zbl

[15] L. Wang, Z.-Z. Bai, “Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT, 44 (2004), 363–386 | DOI | MR | Zbl

[16] M.A. Botchev, L.A. Krukier, “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, Comput. Math. Math. Phys., 37:11 (1997), 1241–1251 | MR | Zbl

[17] G.V. Muratova, L.A. Krukier, E.M. Andreeva, “Fourier analysis of multigrid method with triangular skew-symmetric smoothers”, Commun. Appl. Math. Computat., 27:3 (2013), 355–362 | MR | Zbl

[18] Sh. Li, Zh. Huang, “Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems”, BIT, 53:4 (2013), 987–1012 | DOI | MR | Zbl

[19] Z. Cao, “Convergence of multigrid methods for nonsymmetric, indefinite problems”, Appl. Math. Comput., 28 (1988), 269–288 | DOI | MR | Zbl

[20] J. Mandel, “Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step”, Appl. Math. Comput., 19 (1986), 201–216 | DOI | MR | Zbl

[21] H. Sterck, U.M. Yang, J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners”, SIAM J. Matrix Anal. Appl., 27:4 (2006), 1019–1039 | DOI | MR | Zbl