Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a124, author = {G. V. Muratova and T. S. Martynova and E. M. Andreeva and V. V. Bavin and Z.-Q. Wang}, title = {Multigrid methods with {PSTS-} and {HSS-smoothers} for solving the unsteady {Navier-Stokes} equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2190--2203}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/} }
TY - JOUR AU - G. V. Muratova AU - T. S. Martynova AU - E. M. Andreeva AU - V. V. Bavin AU - Z.-Q. Wang TI - Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2190 EP - 2203 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/ LA - en ID - SEMR_2020_17_a124 ER -
%0 Journal Article %A G. V. Muratova %A T. S. Martynova %A E. M. Andreeva %A V. V. Bavin %A Z.-Q. Wang %T Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 2190-2203 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/ %G en %F SEMR_2020_17_a124
G. V. Muratova; T. S. Martynova; E. M. Andreeva; V. V. Bavin; Z.-Q. Wang. Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2190-2203. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a124/
[1] W. Hackbusch, Multigrid method and application, Springer-Verlag, Berlin, 1985 | MR | Zbl
[2] U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Academic Press, Orlando, 2001 | MR | Zbl
[3] R.D. Falgout, “An introduction to algebraic multigrid”, Computing in Science and Engineering, 8 (2006), 24–33 | DOI
[4] K. Stuben, “Algebraic multigrid (AMG): Experiences and comparisons”, Appl. Math. Comput., 13 (1983), 419–451 | DOI | MR | Zbl
[5] U.M. Yang, “Parallel algebraic multigrid methods - high performance preconditioners”, Lecture Notes in Comp. Science and Eng., 51, Springer, Berlin, 2006, 209–236 | DOI | MR | Zbl
[6] L.A. Krukier, T.S. Martynova, Z.-Z. Bai, “Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems”, J. of Comp. and Appl. Math., 232:1 (2009), 3–16 | DOI | MR | Zbl
[7] Z.-Z. Bai, L.A. Krukier, T.S. Martynova, “Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter for the highest derivative on a uniform grid”, Comput. Math. Math. Phys., 46:2 (2006), 2825–293 | DOI | MR | Zbl
[8] Z.-Z. Bai, G.H. Golub, M.K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 603–626 | DOI | MR | Zbl
[9] P. Wesseling, C.W. Oosterlee, “Geometric multigrid with applications to computational fuid dynamics”, J. Comput. Appl. Math., 128:1–2 (2001), 311–334 | DOI | MR | Zbl
[10] J.-L. Guermond, C. Migeon, G. Pineau, L. Quartapelle, “Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re=1000”, J. Fluid Mech., 450 (2002), 169–199 | DOI | MR | Zbl
[11] S. McKee, M.F. Tome, V.G. Ferreira, J.A. Cuminato, A. Castelo, F.S. Sousa, N. Mangiavacchi, “The MAC method”, Comput. Fluids, 37:8 (2008), 907–930 | DOI | MR | Zbl
[12] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, Z.-Q. Wang, “Numerical solution of the Navier-Stokes equations using multigrid methods with HSS-based and STS-based smoothers”, Symmetry, 12:2 (2020), 233 | DOI | MR
[13] Z.-Z. Bai, “Splitting iteration methods for non-Hermitian positive definite systems of linear equations”, Hokkaido Math. J., 36:4 (2007), 801–814 | DOI | MR | Zbl
[14] Z.-Z. Bai, G.H. Golub, M.K. Ng, “On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems”, Linear Algebra Appl., 428:2 (2008), 413–440 | DOI | MR | Zbl
[15] L. Wang, Z.-Z. Bai, “Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT, 44 (2004), 363–386 | DOI | MR | Zbl
[16] M.A. Botchev, L.A. Krukier, “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, Comput. Math. Math. Phys., 37:11 (1997), 1241–1251 | MR | Zbl
[17] G.V. Muratova, L.A. Krukier, E.M. Andreeva, “Fourier analysis of multigrid method with triangular skew-symmetric smoothers”, Commun. Appl. Math. Computat., 27:3 (2013), 355–362 | MR | Zbl
[18] Sh. Li, Zh. Huang, “Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems”, BIT, 53:4 (2013), 987–1012 | DOI | MR | Zbl
[19] Z. Cao, “Convergence of multigrid methods for nonsymmetric, indefinite problems”, Appl. Math. Comput., 28 (1988), 269–288 | DOI | MR | Zbl
[20] J. Mandel, “Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step”, Appl. Math. Comput., 19 (1986), 201–216 | DOI | MR | Zbl
[21] H. Sterck, U.M. Yang, J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners”, SIAM J. Matrix Anal. Appl., 27:4 (2006), 1019–1039 | DOI | MR | Zbl