Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a119, author = {A. S. Popov}, title = {Cubature formulas on~the~sphere that are invariant under~the~transformations of~the~dihedral group of~rotations~$D_4$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {964--970}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a119/} }
TY - JOUR AU - A. S. Popov TI - Cubature formulas on~the~sphere that are invariant under~the~transformations of~the~dihedral group of~rotations~$D_4$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 964 EP - 970 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a119/ LA - en ID - SEMR_2020_17_a119 ER -
%0 Journal Article %A A. S. Popov %T Cubature formulas on~the~sphere that are invariant under~the~transformations of~the~dihedral group of~rotations~$D_4$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 964-970 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a119/ %G en %F SEMR_2020_17_a119
A. S. Popov. Cubature formulas on~the~sphere that are invariant under~the~transformations of~the~dihedral group of~rotations~$D_4$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 964-970. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a119/
[1] A.N. Kazakov, V.I. Lebedev, “Gauss type quadrature formulas for a sphere that are invariant with respect to the group of dihedron”, Proc. Steklov Inst. Math., 203 (1995), 89–99 | MR | Zbl
[2] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Model., 9:6 (1994), 535–546 | DOI | MR | Zbl
[3] A.S. Popov, “Cubature formulas on a sphere that are invariant with respect to a group of dihedron rotations with inversion $D_{6h}$”, Sib. Zh. Vychisl. Mat., 16:1 (2013), 57–62 | MR | Zbl
[4] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{4h}$”, Sib. Electron. Mat. Izv., 12 (2015), 457–464 | MR | Zbl
[5] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group $D_{2h}$”, Sib. Electron. Mat. Izv., 13 (2016), 252–259 | MR | Zbl
[6] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $D_{5d}$”, Sib. Electron. Mat. Izv., 15 (2018), 389–396 | MR | Zbl
[7] A.S. Popov, “Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$”, Sib. Electron. Mat. Izv., 16 (2019), 1196–1204 | DOI | MR | Zbl
[8] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956 | MR | Zbl
[9] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 | MR | Zbl
[10] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Sib. Zh. Vychisl. Mat., 5:4 (2002), 367–372 | MR
[11] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sib. Mat. Zh., 3:5 (1962), 769–796 | MR | Zbl
[12] A.S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Sib. Zh. Vychisl. Mat., 8:2 (2005), 143–148 | Zbl
[13] A.S. Popov, “Cubature formulae of the fourth and seventh accuracy orders for a sphere invariant under the group of rotations of a square about the polar axis”, Computing methods and technology for solving problems in mathematical physics, Comp. Cent., Sib. Branch, Russian Acad. Sci., Ross. Akad. Nauk Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1993, 47–53 | MR
[14] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 | MR | Zbl
[15] J. Albrecht, L. Collatz, “Zur numerischen Auswertung mehrdimensionaler Integrale”, Z. angew. Math. Mech., 38:1/2 (1958), 1–15 | DOI | MR | Zbl
[16] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl
[17] A.S. Popov, “Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups”, Comput. Math. Math. Phys., 38:1 (1998), 30–37 | MR | Zbl
[18] A.S. Popov, “New cubature formulae invariant under the octahedral group of rotations for a sphere”, Siberian J. of Numer. Mathematics, 4:3 (2001), 281–284 (in Russian) | MR
[19] V.I. Lebedev, “Nodes and weights of Gauss-Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 | MR | Zbl