Spectrum of natural vibrations of a layered medium consisting of a Kelvin--Voigt material and a viscous incompressible fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of one-dimensional natural vibrations is described for a two-phase medium consisting of periodically alternating layers. It is supposed that the first phase is an isotropic Kelvin–Voigt material and the second one is a viscous incompressible fluid. The set of initial approximations to the points of the above spectrum is found. Numerical results illustrating the accuracy of the proposed approximations are presented.
Keywords: spectrum, two-phase medium, natural vibrations, Kelvin–Voigt material.
Mots-clés : viscous incompressible fluid
@article{SEMR_2020_17_a116,
     author = {V. V. Shumilova},
     title = {Spectrum of natural vibrations of a layered medium consisting of a {Kelvin--Voigt} material and a viscous incompressible fluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a116/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Spectrum of natural vibrations of a layered medium consisting of a Kelvin--Voigt material and a viscous incompressible fluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 21
EP  - 31
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a116/
LA  - ru
ID  - SEMR_2020_17_a116
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Spectrum of natural vibrations of a layered medium consisting of a Kelvin--Voigt material and a viscous incompressible fluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 21-31
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a116/
%G ru
%F SEMR_2020_17_a116
V. V. Shumilova. Spectrum of natural vibrations of a layered medium consisting of a Kelvin--Voigt material and a viscous incompressible fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 21-31. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a116/

[1] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[2] V.V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sbornik: Mathematics, 191:7 (2000), 973–1014 | DOI | MR | Zbl

[3] V.V. Zhikov, “On spectrum gaps of some divergent elliptic operators with periodic coefficients”, St. Petersburg Math. J., 16:5 (2004), 773–790 | DOI | MR | Zbl

[4] A.S. Shamaev, V.V. Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin-Voigt viscoelastic materials”, Proc. Steklov Inst. Math., 295 (2016), 202–212 | DOI | MR | Zbl

[5] A.S. Shamaev, V.V. Shumilova, “Calculation of natural frequencies and damping coefficients of a multi-layered composite using homogenization theory”, IFAC PapersOnLine, 51:2 (2018), 126–131 | DOI

[6] V.V. Shumilova, “Spectrum of one-dimensional vibrations of a layered medium consisting of a Kelvin-Voigt material and a viscous incompressible fluid”, J. Sib. Fed. Univ. Math. Phys., 6:3 (2013), 349–356