Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2028-2044.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of properties of pseudo-vertices of a boundary value set in the Dirichlet problem to the first-order PDE of the eikonal type are revealed. Special points of the boundary of the boundary set responsible for the origin of the singularity of the generalized solution of the equation from the corresponding domain — the fundamental solution (according to S. N. Kruzhkov) in geometric optics or the minimax solution (according to A. I. Subbotin) in the theory of optimal control, are studied. In this paper, formulas for markers — numerical characteristics of pseudo-vertices are obtained. The formulas are found for the non-stationary case when the smoothness of the curvature of the boundary of the edge set is broken. The necessary conditions for the existence of pseudo-vertices are also derived in the form of relations generalizing the curvature stationarity conditions. The obtained results are illustrated by the example of building a solution to the velocity control problem.
Mots-clés : eikonal
Keywords: Hamilton–Jacobi equation, minimax solution, velocity, diffeomorohism, optimal result function, singular set, symmetry, transversality.
@article{SEMR_2020_17_a109,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the {Dirichlet} problem to eikonal type equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2028--2044},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a109/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2028
EP  - 2044
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a109/
LA  - ru
ID  - SEMR_2020_17_a109
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2028-2044
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a109/
%G ru
%F SEMR_2020_17_a109
A. A. Uspenskii; P. D. Lebedev. Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2028-2044. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a109/

[1] S.N. Kruzhkov, “Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I: Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR, Sb., 27:3 (1975), 406–446 | DOI | MR | Zbl

[2] M.G. Crandall, P.L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Am. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[3] N.N. Krasovskii, A.I. Subbotin, Positional-differential games, Nauka, M., 1974 | MR | Zbl

[4] A.I. Subbotin, Generalized solutions of first order PDEs. The dynamical optimization perspective, Birkhäuser, Basel, 1994 | MR | Zbl

[5] V.F. Dem'yanov, A.M. Rubinov, Foundations of nonsmooth analysis and quasidifferential calculus, Nauka, M., 1990 | MR | Zbl

[6] A.M. Taras'ev, T.B. Tokmantsev, A.S. Uspenskii, V.N Ushakov, “On procedures for constructing solutions in differential games on a finite interval of time”, J. Math. Sci., 139:5 (2006), 6954–6975 | DOI | MR | Zbl

[7] J.A. Sethian, A. Vladimirsky, “Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes”, Proc. Natl. Acad. Sci. USA, 97:11 (2000), 5699–5703 | DOI | MR | Zbl

[8] S.I. Kabanikhin, O.I. Krivorotko, “A numerical algorithm for computing tsunami wave amplitude”, Numer. Analys. Appl., 9:2 (2016), 118–128 | DOI | MR | Zbl

[9] P.D. Lebedev, A.A. Uspenskii, V.N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proc. Steklov Inst. Math., 263:2 (2008), S191–S201 | MR | Zbl

[10] V.N. Ushakov, A.A. Uspenskii, “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 95–120 | DOI | MR | Zbl

[11] P.D. Lebedev, A.A. Uspenskii, “Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary”, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ., 53 (2019), 98–114 | DOI | MR | Zbl

[12] Th. Bröcker, Differentiable germs and catastrophes, Translated by L. Lander, Cambridge University Press, Cambridge, 1975 | MR | Zbl

[13] N.V. Efimov, S.B. Stechkin, “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118 (1958), 17–19 | MR | Zbl

[14] A.R. Alimov, I.G. Tsar'kov, “Connecectedness and solarity in problems of best and near-best approximation”, Russ. Math. Surv., 71:1 (2016), 1–77 | DOI | MR | Zbl

[15] J.W. Bruce, P.J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[16] A.A. Uspenskii, P.D. Lebedev, “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018), 59–73 | DOI | MR | Zbl

[17] A.A. Uspenskii, P.D. Lebedev, “Transversality conditions for solution branches of a nonlinear equation in a time-optimal problem with circular indicatrix”, Trudy Inst. Mat. Mekh. UrO RAN, 14, no. 4, 2008, 82–100

[18] A.A. Uspenskii, “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Tr. Inst. Mat. Mekh., 21, no. 1, 2015, 250–263 | MR