On oscillation of solutions for linear autonomous functional differential equations with two delays
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1900-1920.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present necessary and sufficient conditions for the oscillation of solutions to linear autonomous functional differential equations with two delays. The conditions are proposed in both the analytic and geometric forms.
Keywords: functional differential equation, delay, concentrated delay, distributed delay
Mots-clés : oscillation, effective conditions.
@article{SEMR_2020_17_a105,
     author = {A. S. Balandin and T. L. Sabatulina},
     title = {On oscillation of solutions for linear autonomous functional differential equations with two delays},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1900--1920},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/}
}
TY  - JOUR
AU  - A. S. Balandin
AU  - T. L. Sabatulina
TI  - On oscillation of solutions for linear autonomous functional differential equations with two delays
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1900
EP  - 1920
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/
LA  - ru
ID  - SEMR_2020_17_a105
ER  - 
%0 Journal Article
%A A. S. Balandin
%A T. L. Sabatulina
%T On oscillation of solutions for linear autonomous functional differential equations with two delays
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1900-1920
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/
%G ru
%F SEMR_2020_17_a105
A. S. Balandin; T. L. Sabatulina. On oscillation of solutions for linear autonomous functional differential equations with two delays. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1900-1920. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/

[1] A.D. Myshkis, Linear Differential Equations with Delayed Argument, Nauka, M., 1972 | MR | Zbl

[2] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1980 | MR | Zbl

[3] M.I. Tramov, “Conditions for the oscillation of the solutions of first order differential equations with retarded argument”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975:3(154) (1975), 92–96 | MR | Zbl

[4] A.D. Myshkis, “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Mat. Sb., N. Ser., 28(70):3 (1951), 641–658 | MR | Zbl

[5] I.Györi, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl

[6] T. Sabatulina, V. Malygina, “On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay”, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), 61, 1–16 | DOI | MR | Zbl

[7] V.I. Zubov, “On the theory of linear stationary systems with lagging arguments”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 6(7), 86–95 | MR | Zbl

[8] Differ. Uravn., 25:12 (1989), 2090–2103 | MR | Zbl

[9] R.G. Koplatadze, T.A. Chanturiya, “Oscillatory and monotone solutions of differential equations of first order with deviating argument”, Differ. Uravn., 18:8 (1982), 1463–1465 | MR | Zbl

[10] V.V. Malygina, T.L. Sabatulina, “The fixed sign property of solutions and stability of linear differential equations with varying distributed delay”, Russ. Math. (Iz. VUZ), 52:8 (2008), 61–64 | DOI | MR | Zbl

[11] T.L. Sabatulina, “Oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci. (N. Y.), 230:5 (2018), 766–769 | DOI | MR | Zbl

[12] V.V. Malygina, “On construction of oscillation domain for autonomous differential equations with delay”, Proceedings of VIII international conference «Modern methods of applied mathematics, control theory and computer technology» (Voronej, 2015), 223–225

[13] A.G. Kurosh, Course of higher algebra, Nauka, M., 1975 | MR