Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a105, author = {A. S. Balandin and T. L. Sabatulina}, title = {On oscillation of solutions for linear autonomous functional differential equations with two delays}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1900--1920}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/} }
TY - JOUR AU - A. S. Balandin AU - T. L. Sabatulina TI - On oscillation of solutions for linear autonomous functional differential equations with two delays JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1900 EP - 1920 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/ LA - ru ID - SEMR_2020_17_a105 ER -
%0 Journal Article %A A. S. Balandin %A T. L. Sabatulina %T On oscillation of solutions for linear autonomous functional differential equations with two delays %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1900-1920 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/ %G ru %F SEMR_2020_17_a105
A. S. Balandin; T. L. Sabatulina. On oscillation of solutions for linear autonomous functional differential equations with two delays. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1900-1920. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a105/
[1] A.D. Myshkis, Linear Differential Equations with Delayed Argument, Nauka, M., 1972 | MR | Zbl
[2] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York, 1980 | MR | Zbl
[3] M.I. Tramov, “Conditions for the oscillation of the solutions of first order differential equations with retarded argument”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975:3(154) (1975), 92–96 | MR | Zbl
[4] A.D. Myshkis, “On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument”, Mat. Sb., N. Ser., 28(70):3 (1951), 641–658 | MR | Zbl
[5] I.Györi, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl
[6] T. Sabatulina, V. Malygina, “On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay”, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), 61, 1–16 | DOI | MR | Zbl
[7] V.I. Zubov, “On the theory of linear stationary systems with lagging arguments”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 6(7), 86–95 | MR | Zbl
[8] Differ. Uravn., 25:12 (1989), 2090–2103 | MR | Zbl
[9] R.G. Koplatadze, T.A. Chanturiya, “Oscillatory and monotone solutions of differential equations of first order with deviating argument”, Differ. Uravn., 18:8 (1982), 1463–1465 | MR | Zbl
[10] V.V. Malygina, T.L. Sabatulina, “The fixed sign property of solutions and stability of linear differential equations with varying distributed delay”, Russ. Math. (Iz. VUZ), 52:8 (2008), 61–64 | DOI | MR | Zbl
[11] T.L. Sabatulina, “Oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci. (N. Y.), 230:5 (2018), 766–769 | DOI | MR | Zbl
[12] V.V. Malygina, “On construction of oscillation domain for autonomous differential equations with delay”, Proceedings of VIII international conference «Modern methods of applied mathematics, control theory and computer technology» (Voronej, 2015), 223–225
[13] A.G. Kurosh, Course of higher algebra, Nauka, M., 1975 | MR