Approximate solution of the smooth transition equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1849-1862

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of stability and the approximate solution of the integral smooth transition equation first introduced and studied by Yu.I. Chersky are considered. Using the solution of the smooth transition equation under classical assumptions, it is possible to construct the solution of the equation under weaker constraints on the kernels. For the approximate solution, an error estimation and a theorem on the uniqueness and sustainability are provided.
Keywords: smooth transition integral equation, approximate solution, iterative algorithms, stability.
@article{SEMR_2020_17_a104,
     author = {V. A. Lukianenko},
     title = {Approximate solution of the smooth transition equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1849--1862},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/}
}
TY  - JOUR
AU  - V. A. Lukianenko
TI  - Approximate solution of the smooth transition equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1849
EP  - 1862
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/
LA  - en
ID  - SEMR_2020_17_a104
ER  - 
%0 Journal Article
%A V. A. Lukianenko
%T Approximate solution of the smooth transition equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1849-1862
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/
%G en
%F SEMR_2020_17_a104
V. A. Lukianenko. Approximate solution of the smooth transition equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1849-1862. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/