Approximate solution of the smooth transition equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1849-1862.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of stability and the approximate solution of the integral smooth transition equation first introduced and studied by Yu.I. Chersky are considered. Using the solution of the smooth transition equation under classical assumptions, it is possible to construct the solution of the equation under weaker constraints on the kernels. For the approximate solution, an error estimation and a theorem on the uniqueness and sustainability are provided.
Keywords: smooth transition integral equation, approximate solution, iterative algorithms, stability.
@article{SEMR_2020_17_a104,
     author = {V. A. Lukianenko},
     title = {Approximate solution of the smooth transition equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1849--1862},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/}
}
TY  - JOUR
AU  - V. A. Lukianenko
TI  - Approximate solution of the smooth transition equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1849
EP  - 1862
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/
LA  - en
ID  - SEMR_2020_17_a104
ER  - 
%0 Journal Article
%A V. A. Lukianenko
%T Approximate solution of the smooth transition equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1849-1862
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/
%G en
%F SEMR_2020_17_a104
V. A. Lukianenko. Approximate solution of the smooth transition equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1849-1862. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/

[1] F.D. Gakhov, Yu.I. Chersky, Equations of convolution type, Nauka, M., 1978 | MR | Zbl

[2] V.A. Luk'yanenko, “Analogs of Sokhotsky formulas and their applications”, Mathematics, Informatics, Computer science, Modeling, Education, Proceeding of the scientific-practical conference MIKME-2017 and Tauride scientific conference of students and young specialists in Mathematics and Informatics, IP Kornienko A.A., 2017, 75–80

[3] V.A. Luk'yanenko, “An exceptional case of the equation of smooth transfer”, Interaction in the mechanics of construction, Some questions, Collect. Artic., Kiev–Odessa, 1980, 38–43 | Zbl

[4] V.A. Luk'yanenko, “Equation of smooth transition in scale of spaces of generalized functions”, Tavricheskij Vestn. Inform. Mat., 2005:2 (2005), 90–106 | Zbl

[5] V.A. Luk'yanenko, “Integral equations of convolution type in the band”, KROMSH-2014, TNU, 2014, 67

[6] V.A. Luk'yanenko, “Construction of the approximate solution of the convolution type equation by the close equation”, Marchukov scientific readings-2019, abstracts of the International conference «Actual problems of computational and applied mathematics», NSU CPI, 2019, 92–93

[7] N.Ya. Tikhonenko, “On the method of approximate factorization”, Sov. Math. (Iz. VUZ), 20:4 (1976), 60–72 | MR | Zbl

[8] Yu.I. Chersky, “Two theorems on error estimation and their applications”, Sov. Math., Dokl., 4 (1963), 666–670 | Zbl

[9] Yu.I. Chersky, “Theorem on error estimation”, Abstract of the scientific conference dedicated to the 100th anniversary of OSU, 1965, 21–22

[10] Yu.I. Chersky, “Convolution type Equations”, Izv. Akad. Nauk SSSR, Ser. Mat., 22:3 (1958), 361–378 | MR | Zbl

[11] Yu.I. Chersky, “A normally solvable equation of smooth transition”, Sov. Math., Dokl., 11 (1970), 55–59 | Zbl

[12] Yu.I. Chersky, “Integral equation in convolutions with variable coefficients”, Ukr. Math. J., 33 (1982), 599–604 | DOI | MR | Zbl

[13] Yu.I. Chersky, P.V. Kerekesha, D.P. Kerekesha, Method of conjugation of analytic functions with applications, Astroprint, 2010

[14] V. Luk'yanenko, M. Kozlova, U. Hazova, “Integral Equations of Urisohns Type”, Proceeding of the International Conference «Integral Equations-2010», PAIS, 2010, 80–84

[15] Fan Tang Da, “A certain integral equation of the smooth transition type”, Differ. Uravn., 8:6 (1972), 1052–1067 | MR | Zbl