Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a104, author = {V. A. Lukianenko}, title = {Approximate solution of the smooth transition equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1849--1862}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/} }
V. A. Lukianenko. Approximate solution of the smooth transition equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1849-1862. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a104/
[1] F.D. Gakhov, Yu.I. Chersky, Equations of convolution type, Nauka, M., 1978 | MR | Zbl
[2] V.A. Luk'yanenko, “Analogs of Sokhotsky formulas and their applications”, Mathematics, Informatics, Computer science, Modeling, Education, Proceeding of the scientific-practical conference MIKME-2017 and Tauride scientific conference of students and young specialists in Mathematics and Informatics, IP Kornienko A.A., 2017, 75–80
[3] V.A. Luk'yanenko, “An exceptional case of the equation of smooth transfer”, Interaction in the mechanics of construction, Some questions, Collect. Artic., Kiev–Odessa, 1980, 38–43 | Zbl
[4] V.A. Luk'yanenko, “Equation of smooth transition in scale of spaces of generalized functions”, Tavricheskij Vestn. Inform. Mat., 2005:2 (2005), 90–106 | Zbl
[5] V.A. Luk'yanenko, “Integral equations of convolution type in the band”, KROMSH-2014, TNU, 2014, 67
[6] V.A. Luk'yanenko, “Construction of the approximate solution of the convolution type equation by the close equation”, Marchukov scientific readings-2019, abstracts of the International conference «Actual problems of computational and applied mathematics», NSU CPI, 2019, 92–93
[7] N.Ya. Tikhonenko, “On the method of approximate factorization”, Sov. Math. (Iz. VUZ), 20:4 (1976), 60–72 | MR | Zbl
[8] Yu.I. Chersky, “Two theorems on error estimation and their applications”, Sov. Math., Dokl., 4 (1963), 666–670 | Zbl
[9] Yu.I. Chersky, “Theorem on error estimation”, Abstract of the scientific conference dedicated to the 100th anniversary of OSU, 1965, 21–22
[10] Yu.I. Chersky, “Convolution type Equations”, Izv. Akad. Nauk SSSR, Ser. Mat., 22:3 (1958), 361–378 | MR | Zbl
[11] Yu.I. Chersky, “A normally solvable equation of smooth transition”, Sov. Math., Dokl., 11 (1970), 55–59 | Zbl
[12] Yu.I. Chersky, “Integral equation in convolutions with variable coefficients”, Ukr. Math. J., 33 (1982), 599–604 | DOI | MR | Zbl
[13] Yu.I. Chersky, P.V. Kerekesha, D.P. Kerekesha, Method of conjugation of analytic functions with applications, Astroprint, 2010
[14] V. Luk'yanenko, M. Kozlova, U. Hazova, “Integral Equations of Urisohns Type”, Proceeding of the International Conference «Integral Equations-2010», PAIS, 2010, 80–84
[15] Fan Tang Da, “A certain integral equation of the smooth transition type”, Differ. Uravn., 8:6 (1972), 1052–1067 | MR | Zbl