On the classes of partial functions generated by maximal partial ultraclones
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 32-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of classification of partial functions with respect to belonging to the maximal partial ultraclones of rank 2 is considered. A description of the equivalence classes of partial functions by this relation is obtained.
Keywords: partial function, multifunction, many-valued logic, partial ultraclone.
Mots-clés : superposition
@article{SEMR_2020_17_a1,
     author = {S. A. Badmaev and I. K. Sharankhaev},
     title = {On the classes of partial functions generated by maximal partial ultraclones},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a1/}
}
TY  - JOUR
AU  - S. A. Badmaev
AU  - I. K. Sharankhaev
TI  - On the classes of partial functions generated by maximal partial ultraclones
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 32
EP  - 46
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a1/
LA  - ru
ID  - SEMR_2020_17_a1
ER  - 
%0 Journal Article
%A S. A. Badmaev
%A I. K. Sharankhaev
%T On the classes of partial functions generated by maximal partial ultraclones
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 32-46
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a1/
%G ru
%F SEMR_2020_17_a1
S. A. Badmaev; I. K. Sharankhaev. On the classes of partial functions generated by maximal partial ultraclones. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 32-46. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a1/

[1] N.A. Peryazev, I.K. Sharankhaev, “Galois theory for clones and superclones”, Discrete Math. Appl., 26:4 (2016), 227–238 | DOI | MR | Zbl

[2] V.I. Panteleyev, “On Two Maximal Multiclones and Partial Ultraclones”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 5:4 (2012), 46–53 | Zbl

[3] S.A. Badmaev, I.K. Sharankhaev, “On Maximal Clones of Partial Ultrafunctions on a Two-element Set”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 3–18 | MR | Zbl

[4] S.V. Yablonskij, “On the Superpositions of Logic Functions”, Mat. Sbornik, 30:2(72) (1952), 329–348 | MR | Zbl

[5] S.A. Badmaev, “A Completeness Criterion of Set of Multifunctions in Full Partial Ultraclone of Rank 2”, Sib. Elektron. Mat. Izv., 15 (2018), 450–474 | MR | Zbl

[6] S.A. Badmaev, “On the Classes of Boolean Functions Generated by Maximal Partial Ultraclones”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 27 (2019), 3–14 | MR | Zbl