Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a98, author = {E. V. Pyatkina}, title = {A problem of glueing of two {Kirchhoff--Love} plates}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1351--1374}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a98/} }
E. V. Pyatkina. A problem of glueing of two Kirchhoff--Love plates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1351-1374. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a98/
[1] A.M. Khludnev, “On modelling elastic bodies with defects”, Sib. Electr. Math. Rep., 15 (2018), 153–166 | MR | Zbl
[2] V.V. Sil'vestrov, I.A. Ivanov, “A packet of elastic plates joined along a periodic system of segments”, J. Appl. Mech. Tech. Phys., 42:4 (2001), 731–736 | Zbl
[3] M. Bach, A.M. Khludnev, V.V. Kovtunenko, “Derivatives of the energy functional for 2D-problems with a crack under Singorini and friction condition”, Math. Meth. Appl. Sci., 23:6 (2000), 515–534 | MR | Zbl
[4] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z.A.M.M., 92:9 (2012), 716–730 | MR | Zbl
[5] E.M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z.A.M.P., 68:19 (2017), 518–534 | MR | Zbl
[6] E.M. Rudoy, N.A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of equilibrium of an elastic two-layer structure with a through crack”, Numer. Analys. Appl., 10:1 (2017), 63–73 | MR
[7] Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323
[8] Yu. I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestnik Moskov.Gos. Univ. im. Baumana Ser. Estestv Nauki, 3 (2012), 86–99 (in Russian)
[9] Yu. I. Dimitrienko, E.A. Gubareva, Yu.V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestnik Moskov.Gos. Univ. im. Baumana Ser. Estestv. Nauki, 4 (2015), 67–87 (in Russian)
[10] A.M. Khludnev, “Problem on the contact of two elastic plates”, J. Appl. Math. Mech., 47:1 (1983), 110–115 | MR
[11] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Boston–Southampton, 2000
[12] A.M. Khludnev, Elasticity Theory Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[13] E.I. Grigolyuk, V.M. Tolkachev, Contact Problems of Theory of Plates and Shells, Mashinostroenie, M., 1980 (in Russian)
[14] P.A. Zhilin, Applied Mechanics. Basis of Shell Theory, Politech. Gos. Univ., St. Petersburg, 2006 (in Russian)
[15] S.N. Dmitriev, “Analytical solution to the Hertzian contact problem of elastic deformations of a thin plate positioned in a cylindrical cavity”, Nauka i obrazovanie, 2013, no. 1 (in Russian) | DOI | MR
[16] V.V. Bolotin, Yu.N. Novichkov, Mechanics of Multilayered Structures, Mashinostroenie, M., 1980 (in Russian)
[17] A.R. Rzhanitsyn, Built-up Bars and Plates, Stroiizdat, M., 1986 (in Russian)
[18] E.V. Pyatkina, “A contact problem for two plates of the same shape glued along one edge of a crack”, J. Appl. Ind. Mech., 12:2 (2018), 334–346 | MR | Zbl
[19] A.M. Khludnev, “On unilateral contact of two plates aligned at an angle to each other”, J. Appl.Mech. Tech. Phys., 49:4 (2008), 553–567 | MR | Zbl
[20] N.V. Neustroeva, “Unilateral contact of elastic plates to rigid inclusion”, Vestn. Novosib. Gos. Univ. Ser. Math. Mech. Inform., 9:4 (2009), 51–64 (in Russian) | Zbl
[21] T.A. Rotanova, “On the statements and solvability of the problems on the contact of two plates containing rigid inclusions”, Sibirskii zhurnal industrial'noi matematiki, 15:2 (2012), 107–118 (in Russian) | MR | Zbl
[22] A.M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, 1989 | MR | Zbl