On some properties of first order algebraic differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 893-901
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with first-order algebraic differential equations. Installed effective necessary conditions under which such equations have one of the solutions of an entire function finite order. It is also proved that in this case every solution of such an equation is a solution of some linear homogeneous differential equation of a special type.
Keywords:
algebraic differential equation, entire function, linear homogeneous differential equation.
@article{SEMR_2019_16_a91,
author = {A. Y. Yanchenko and V. A. Podkopaeva},
title = {On some properties of first order algebraic differential equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {893--901},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/}
}
TY - JOUR AU - A. Y. Yanchenko AU - V. A. Podkopaeva TI - On some properties of first order algebraic differential equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 893 EP - 901 VL - 16 UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/ LA - ru ID - SEMR_2019_16_a91 ER -
A. Y. Yanchenko; V. A. Podkopaeva. On some properties of first order algebraic differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 893-901. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/
[1] V.V. Golubev, Lectures on the differential differential theory, GITTL, Moscow, 1953
[2] V.N. Gorbuzov, Integral solutions of algebraic differential equations, GrSU, Grodno, 2006
[3] A. Ya. Yanchenko, V.A. Podkopaeva, “On integral solutions — solutions of a class of algebraic differential equations”, Siberian Electronic Mathematical Reports, 15 (2018), 1284–1291 (in Russian) | MR | Zbl
[4] B. Ya. Levin, Distribution of zeros of entire functions, GITTL, M., 1956 | MR | Zbl
[5] B.L. Van der Waerden, Algebra, Nauka, M., 1976 | MR | Zbl