On some properties of first order algebraic differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 893-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with first-order algebraic differential equations. Installed effective necessary conditions under which such equations have one of the solutions of an entire function finite order. It is also proved that in this case every solution of such an equation is a solution of some linear homogeneous differential equation of a special type.
Keywords: algebraic differential equation, entire function, linear homogeneous differential equation.
@article{SEMR_2019_16_a91,
     author = {A. Y. Yanchenko and V. A. Podkopaeva},
     title = {On some properties of first order algebraic differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {893--901},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/}
}
TY  - JOUR
AU  - A. Y. Yanchenko
AU  - V. A. Podkopaeva
TI  - On some properties of first order algebraic differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 893
EP  - 901
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/
LA  - ru
ID  - SEMR_2019_16_a91
ER  - 
%0 Journal Article
%A A. Y. Yanchenko
%A V. A. Podkopaeva
%T On some properties of first order algebraic differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 893-901
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/
%G ru
%F SEMR_2019_16_a91
A. Y. Yanchenko; V. A. Podkopaeva. On some properties of first order algebraic differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 893-901. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a91/

[1] V.V. Golubev, Lectures on the differential differential theory, GITTL, Moscow, 1953

[2] V.N. Gorbuzov, Integral solutions of algebraic differential equations, GrSU, Grodno, 2006

[3] A. Ya. Yanchenko, V.A. Podkopaeva, “On integral solutions — solutions of a class of algebraic differential equations”, Siberian Electronic Mathematical Reports, 15 (2018), 1284–1291 (in Russian) | MR | Zbl

[4] B. Ya. Levin, Distribution of zeros of entire functions, GITTL, M., 1956 | MR | Zbl

[5] B.L. Van der Waerden, Algebra, Nauka, M., 1976 | MR | Zbl