Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 144-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, inverse problems are posed and studied to determine the factors of the right-hand sides of a mixed parabolic-hyperbolic type with a degenerate parabolic part, depending on time. On the basis of the theory of integral equations, the corresponding uniqueness theorems and the existence of solutions of inverse problems were proved, and explicit formulas for the solution were obtained.
Keywords: equation of mixed parabolic-hyperbolic type, initial-boundary value problem, inverse problems, uniqueness, series, small denominators, integral equations.
Mots-clés : existence
@article{SEMR_2019_16_a81,
     author = {S. N. Sidorov},
     title = {Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {144--157},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/}
}
TY  - JOUR
AU  - S. N. Sidorov
TI  - Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 144
EP  - 157
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/
LA  - ru
ID  - SEMR_2019_16_a81
ER  - 
%0 Journal Article
%A S. N. Sidorov
%T Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 144-157
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/
%G ru
%F SEMR_2019_16_a81
S. N. Sidorov. Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 144-157. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/

[1] I.M. Gelfand, “Some questions of analysis and differential equations”, Uspehi Mat. Nauk, 14:3(87) (1959), 3–19 | MR | Zbl

[2] Ya.S. Uflyand, “On the question of the propagation of oscillations in compound electric lines”, Engineering and Physics Journal, 7:1 (1964), 89–92

[3] Ya.S. Uflyand, I.T. Lozanovskaya, “On a Class of Problems of Mathematical Physics with a Mixed Spectrum of Eigenvalues”, Dokl. Academy of Sciences of the USSR, 164:5 (1965), 1005–1007 | MR | Zbl

[4] T.D. Dzhuraev, A. Sopuev, M. Mamazhanov, Boundary value problems for parabolic-hyperbolic equations, Fan, Tashkent, 1986 | MR | Zbl

[5] O.A. Ladyzhenskaya, L. Stupyalis, “On mixed-type equations”, Bulletin of Leningrad State University, A series of mathematics, mechanics and astronomy, 19:4 (1965), 38–46 | MR | Zbl

[6] L. Stupyalis, “Initial-boundary value problems for equations of mixed type”, Proceedings of the Steklov Institute of Mathematics, 127 (1975), 135–170 | MR

[7] M.M. Lavrentyev, K.G. Reznitskaya, V.G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 | MR

[8] V.G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 | MR | Zbl

[9] V.G. Romanov, S.I. Kabanikhin, Inverse geo-electrical problems, Nauka, M., 1991 | MR

[10] A.M. Denisov, Introduction to the theory of inverse problems, MSU, M., 1994 | MR

[11] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc., New York–Basel, 1999 | MR

[12] V. Isakov, Inverse problems for partial differential equations, Springer, New-York, 2006 | MR | Zbl

[13] S.I. Kabanikhin, Inverse and incorrect tasks, Siberian Scientific Publishing, Novosibirsk, 2009

[14] A.I. Prilepko, V.V. Soloviev, “Solvability theorems and the Rote method in inverse problems for a parabolic equation, I, II”, Differential Equations, 23:10 (1987), 1791–1799 | MR | Zbl

[15] A.I. Prilepko, I.A. Vasin, “Study of uniqueness problems in some nonlinear inverse problems of hydrodynamics”, Differential Equations, 26:1 (1990), 109–120 | MR | Zbl

[16] A.I. Prilepko, A.B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations”, Math. Notes, 53:1 (1993), 63–66 | DOI | MR | Zbl

[17] V.V. Soloviev, “Determination of the source and coefficients in a parabolic equation in the multidimensional case”, Differential Equations, 31:6 (1995), 1060–1069 | MR

[18] V.V. Soloviev, “The existence of a solution in the “whole” inverse problem of determining the source in a quasilinear parabolic equation”, Differential Equations, 32:4 (1996), 536–544 | MR

[19] A.B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sbornik: Mathematics, 204:10 (2013), 1391–1434 | DOI | MR | Zbl

[20] A.I. Kozhanov, “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:6 (2004), 784–795 | DOI | MR | Zbl

[21] A.I. Kozhanov, R.R. Safiullova, “Linear inverse problems for parabolic and hyperbolic equations”, J. Inverse Ill-Posed Probl., 18:1 (2010), 1–18 | DOI | MR | Zbl

[22] A.G. Megrabov, Forward and inverse problems for hyperbolic, elliptic, and mixed type equations, VSP, Utrecht–Boston, 2003 | MR | Zbl

[23] S.Z. Djamalov, “The linear inverse problem for the equation of Trikomi in three-dimensional space”, Bulletin KRASEC. Phys. Math. Sci., 13:2 (2016), 10–15 | MR

[24] S.Z. Djamalov, “The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space”, Vestnik KRAUNC. Fiz.-mat. nauki., 17:1 (2017), 7–13 | MR | Zbl

[25] K.B. Sabitov, Direct and inverse problems for equations of mixed parabolic-hyperbolic type, Nauka, M., 2016 | MR

[26] K.B. Sabitov, “Initial boundary and inverse problems for the inhomogeneous equation of a mixed parabolic-hyperbolic equation”, Math. Notes, 102:3 (2017), 378–395 | DOI | MR | Zbl

[27] K.B. Sabitov, L. Kh. Rakhmanova, “Initial-boundary value problem for an equation of mixed parabolic-hyperbolic type in a rectangular domain”, Differential Equations, 44:9 (2008), 1218–1224 | DOI | MR | Zbl

[28] K.B. Sabitov, “The Tricomi problem for a mixed parabolic-hyperbolic equation in a rectangular domain”, Math. Notes, 86:2 (2009), 249–254 | DOI | MR | Zbl

[29] K.B. Sabitov, “Initial-boundary value problem for a parabolic-hyperbolic equation with power-law degeneration on the type change line”, Differential Equations, 47:10 (2011), 1490–1497 | DOI | MR | Zbl

[30] K.B. Sabitov, S.N. Sidorov, “On a nonlocal problem for a degenerating parabolic-hyperbolic equation”, Differential Equations, 50:3 (2014), 352–-361 | DOI | MR | Zbl

[31] K.B. Sabitov, S.N. Sidorov, “Initial-Boundary-Value Problem for Inhomogeneous Degenerate Equations of Mixed Parabolic-Hyperbolic Type”, Journal of Mathematical Sciences, 236:6 (2019), 603–640 | DOI | MR

[32] K.B. Sabitov, E.M. Safin, “The inverse problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain”, Russian Math. (Iz. VUZ), 54:4 (2010), 48–54 | DOI | MR | Zbl

[33] K.B. Sabitov, E.M. Safin, “The inverse problem for an equation of mixed parabolic-hyperbolic type”, Math. Notes, 87:6 (2010), 880–889 | DOI | MR | Zbl

[34] K.B. Sabitov, S.N. Sidorov, “Inverse problem for degenerate parabolic-hyperbolic equation with nonlocal boundary condition”, Russian Math. (Iz. VUZ), 59:1 (2015), 39–50 | DOI | MR | Zbl

[35] K.B. Sabitov, S.N. Sidorov, “Inverse problems for a degenerate mixed parabolic-hyperbolic equation for finding the time-dependent factors of the right sides”, Ufa Mathematical Journal, 2018 (to appear)

[36] K.B. Sabitov, A.R. Zaynullov, “Inverse problems for determining initial conditions in a mixed problem for a telegraph equation”, Results of science and technology. A series of modern mathematics and its applications. Thematic Reviews, 141 (2017), 111–133 | MR

[37] K.B. Sabitov, Functional, differential and integral equations, Vysshaya shkola, M., 2005