Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 144-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, inverse problems are posed and studied to determine the factors of the right-hand sides of a mixed parabolic-hyperbolic type with a degenerate parabolic part, depending on time. On the basis of the theory of integral equations, the corresponding uniqueness theorems and the existence of solutions of inverse problems were proved, and explicit formulas for the solution were obtained.
Keywords: equation of mixed parabolic-hyperbolic type, initial-boundary value problem, inverse problems, uniqueness, series, small denominators, integral equations.
Mots-clés : existence
@article{SEMR_2019_16_a81,
     author = {S. N. Sidorov},
     title = {Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {144--157},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/}
}
TY  - JOUR
AU  - S. N. Sidorov
TI  - Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 144
EP  - 157
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/
LA  - ru
ID  - SEMR_2019_16_a81
ER  - 
%0 Journal Article
%A S. N. Sidorov
%T Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 144-157
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/
%G ru
%F SEMR_2019_16_a81
S. N. Sidorov. Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 144-157. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a81/