Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a8, author = {N. D. Markhabatov and S. V. Sudoplatov}, title = {Algebras for definable families of theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {600--608}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a8/} }
N. D. Markhabatov; S. V. Sudoplatov. Algebras for definable families of theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 600-608. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a8/
[1] N. D. Markhabatov, S. V. Sudoplatov, Definable families of theories, related calculi and ranks, Novosibirsk, 2019, arXiv: 1901.11011v1 [math.LO] | MR | Zbl
[2] S. V. Sudoplatov, “Combinations of structures”, The Bulletin of Irkutsk State University. Series “Mathematics”, 24 (2018), 65–84 | DOI | MR
[3] S. V. Sudoplatov, “Closures and generating sets related to combinations of structures”, Reports of Irkutsk State University. Series “Mathematics”, 16 (2016), 131–144 | MR | Zbl
[4] S. V. Sudoplatov, “Families of language uniform theories and their generating sets”, Reports of Irkutsk State University. Series “Mathematics”, 16 (2016), 62–76 | Zbl
[5] S. V. Sudoplatov, “Combinations related to classes of finite and countably categorical structures and their theories”, Siberian Electronic Mathematical Reports, 14 (2017), 135–150 | MR | Zbl
[6] S. V. Sudoplatov, “Relative $e$-spectra and relative closures for families of theories”, Siberian Electronic Mathematical Reports, 14 (2017), 296–307 | MR | Zbl
[7] S. V. Sudoplatov, “On semilattices and lattices for families of theories”, Siberian Electronic Mathematical Reports, 14 (2017), 980–985 | MR | Zbl
[8] S. V. Sudoplatov, Approximations of theories, 2019, arXiv: 1901.08961v1 [math.LO]
[9] S. V. Sudoplatov, Ranks for families of theories and their spectra, 2019, arXiv: 1901.08464v1 [math.LO]
[10] N. D. Markhabatov, S. V. Sudoplatov, Ranks for families of all theories of given languages, 2019, arXiv: 1901.09903v1 [math.LO] | MR | Zbl
[11] S. Feferman, R. Vaught, “The first order properties of products of algebraic systems”, Fund. Math., 47 (1959), 57–103 | DOI | MR | Zbl
[12] M. Morley, “Categoricity in Power”, Transactions of the American Mathematical Society, 114:2 (1965), 514–538 | DOI | MR | Zbl
[13] S. Koppelberg, Handbook of Boolean Algebras, v. 1, eds. J. D. Monk, R. Bonnet, North-Holland, Amsterdam, 1989 | MR | Zbl
[14] W. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the AMS, 77, no. 396, 1989 | DOI | MR
[15] P. Hinman, Fundamentals of Mathematical Logic, AK Peters, Wellesley, Massachusets, 2005 | MR | Zbl