Wiener index of subdivisions of a tree
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1581-1586.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wiener index $W(T)$ of a tree $T$ is defined as the sum of distances between all vertices of $T$. The edge $k$-subdivision $T_e$ is constructed from a tree $T$ by replacing its edge $e$ with the path on $k+2$ vertices. Edge $k$-subdivisions of each of edges $e_1, e_2, \dots, e_{n-1}$ of a tree with $n$ vertices generate a family containing $n-1$ trees. A relation between quantities $W(T_{e_1}) + W(T_{e_2}) + \cdots + W(T_{e_{n-1}})$ and $W(T)$ is established.
Keywords: tree, Wiener index.
Mots-clés : graph invariant
@article{SEMR_2019_16_a74,
     author = {A. A. Dobrynin},
     title = {Wiener index of subdivisions of a tree},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1581--1586},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a74/}
}
TY  - JOUR
AU  - A. A. Dobrynin
TI  - Wiener index of subdivisions of a tree
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1581
EP  - 1586
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a74/
LA  - en
ID  - SEMR_2019_16_a74
ER  - 
%0 Journal Article
%A A. A. Dobrynin
%T Wiener index of subdivisions of a tree
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1581-1586
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a74/
%G en
%F SEMR_2019_16_a74
A. A. Dobrynin. Wiener index of subdivisions of a tree. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1581-1586. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a74/

[1] D. Bonchev, D.H. Rouvray (eds.), Chemical Graph Theory – Introduction and Fundamentals, Gordon Breach, New York, 1991 | Zbl

[2] A.A. Dobrynin, R. Entringer, I. Gutman, “Wiener index of trees: theory and applications”, Acta Appl. Math., 66:3 (2001), 211–249 | DOI | MR | Zbl

[3] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, “Wiener index of hexagonal systems”, Acta Appl. Math., 72:3 (2002), 247–294 | DOI | MR | Zbl

[4] A.A. Dobrynin, L.S. Mel'nikov, “Wiener index of line graphs”, Distance in Molecular Graphs — Theory, eds. I. Gutman, B. Furtula, Univ. Kragujevac, Kragujevac, Serbia, 2012, 85–121

[5] M. Eliasi, G. Raeisi, B. Taeri, “Wiener index of some graph operations”, Discrete Appl. Math., 160:9 (2012), 1333–1344 | DOI | MR | Zbl

[6] I. Gutman, “Distance in thorny graph”, Publ. Inst. Math. (Beograd), 63 (1998), 31–36 | MR | Zbl

[7] I. Gutman, B. Furtula (eds.), Distance in Molecular Graphs — Theory, Mathematical Chemistry Monographs, 12, University of Kragujevac, Kragujevac, 2012 | MR

[8] I. Gutman, B. Furtula (eds.), Distance in Molecular Graphs — Applications, Mathematical Chemistry Monographs, 13, University of Kragujevac, Kragujevac, 2012 | MR

[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer–Verlag, Berlin, 1986 | MR | Zbl

[10] D.J. Klein, Z. Mihalić, D. Plavšić, N. Trinajstić, “Molecular topological index: a relation with the Wiener index”, J. Chem. Inf. Comput. Sci., 32 (1992), 304–305 | DOI

[11] M. Knor, R. Škrekovski, “Wiener index of line graphs”, Quantitative Graph Theory: Mathematical Foundations and Applications, Discrete Mathematics and Its Applications, eds. M. Dehmer, F. Emmert-Streib, Chapman and Hall/CRC, New York, 2014, 279–301 | DOI | MR

[12] M. Knor, R. Škrekovski, A. Tepeh, “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl

[13] S. Nikolić, N. Trinajstić, Z. Mihalić, “The Wiener index: developments and applications”, Croat. Chem. Acta, 68 (1995), 105–129

[14] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000

[15] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983 | MR

[16] Y.N. Yeh, I. Gutman, “On the sum of all distances in composite graphs”, Discrete Math., 135 (1994), 359–365 | DOI | MR | Zbl

[17] H. Wiener, “Structural determination of paraffin boiling points”, J. Am. Chem. Soc., 69 (1947), 17–20 | DOI