All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least~$6$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1334-1344

Voir la notice de l'article provenant de la source Math-Net.Ru

Lebesgue (1940) proved that every plane graph with minimum degree $\delta$ at least $3$ and girth $g$ (the length of a shortest cycle) at least $5$ has a path on three vertices ($3$-path) of degree $3$ each. A description is tight if no its parameter can be strengthened, and no triplet dropped. Borodin et al. (2013) gave a tight description of $3$-paths in plane graphs with $\delta\ge3$ and $g\ge3$, and another tight description was given by Borodin, Ivanova and Kostochka in 2017. In 2015, we gave seven tight descriptions of $3$-paths when $\delta\ge3$ and $g\ge4$. Furthermore, we proved that this set of tight descriptions is complete, which was a result of a new type in the structural theory of plane graphs. Also, we characterized (2018) all one-term tight descriptions if $\delta\ge3$ and $g\ge3$. The problem of producing all tight descriptions for $g\ge3$ remains widely open even for $\delta\ge3$. Recently, eleven tight descriptions of $3$-paths were obtained for plane graphs with $\delta=2$ and $g\ge4$ by Jendrol', Maceková, Montassier, and Soták, four of which descriptions are for $g\ge9$. In 2018, Aksenov, Borodin and Ivanova proved ten new tight descriptions of $3$-paths for $\delta=2$ and $g\ge9$ and showed that no other tight descriptions exist. In this paper we give a complete list of tight descriptions of $3$-paths centered at a $2$-vertex in the plane graphs with $\delta=2$ and $g\ge6$.
Keywords: plane graph, structure properties, tight description, $3$-path, minimum degree, girth.
@article{SEMR_2019_16_a71,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least~$6$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1334--1344},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a71/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least~$6$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1334
EP  - 1344
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a71/
LA  - en
ID  - SEMR_2019_16_a71
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least~$6$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1334-1344
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a71/
%G en
%F SEMR_2019_16_a71
O. V. Borodin; A. O. Ivanova. All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least~$6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1334-1344. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a71/