Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1254-1259.

Voir la notice de l'article provenant de la source Math-Net.Ru

Distance regular graphs $\Gamma$ of diameter 3 for which the graphs $\Gamma_2$ and $\Gamma_3$ are strongly regular, studied by M.S. Nirova. For $Q$-polynomial graphs with intersection arrays $\{69,56,10; 1,14,60\}$ and $\{119,100,15; 1, 20,105\}$ the graph $\Gamma_3$ is strongly regular and does not contain triangles. Automorphisms of graphs with these intersection arrays were found by A.A. Makhnev, M.S. Nirova and M.M. Isakova, A.A. Makhnev, respectively. The graph $\Gamma$ with the intersection array $\{74,54,15; 1,9,60\} $ also is $Q $-polynomial, and $\Gamma_3$ is a strongly regular graph with parameters $(630,111,12,21)$. It is proved in the paper that graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15; 1,9,60\}$ and $\{119,100,15; 1,20, 105\} $ do not exist.
Keywords: distance-regular graph, triple intersection numbers.
@article{SEMR_2019_16_a70,
     author = {A. A. Makhnev and M. M. Isakova and M. S. Nirova},
     title = {Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1254--1259},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a70/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. M. Isakova
AU  - M. S. Nirova
TI  - Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1254
EP  - 1259
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a70/
LA  - ru
ID  - SEMR_2019_16_a70
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A M. S. Nirova
%T Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1254-1259
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a70/
%G ru
%F SEMR_2019_16_a70
A. A. Makhnev; M. M. Isakova; M. S. Nirova. Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1254-1259. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a70/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] A. Jurisic, J. Vidali, “Sylvester graph and Moore graphs”, Europ. J. Comb., 80 (2019), 184–193 | DOI | MR | Zbl

[3] M.S. Nirova, “On distance-regular graphs with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Siberian Electronic Mathematical Reports, 15 (2018), 175–185 | MR

[4] A.A. Makhnev, M.S. Nirova, “On automorphisms of a distance-regular graph with intersection array $\{69,56,10;1,14,60\}$”, Trudy IMM UrO RAN, 23, no. 3, 2017, 182–190 | DOI | MR

[5] M.M. Isakova, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,119\}$”, Siberian Electronic Mathematical Reports, 15 (2018), 198–204 | MR | Zbl

[6] K. Coolsaet, A. Jurisic, “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory, Ser. A, 115 (2008), 1086–1095 | DOI | MR | Zbl