On the $\omega $-independence of quasivarieties of nilpotence groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 516-522

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists a set $\mathcal{R}$ of quasivarieties of nilpotent groups of class two any quasivariety from $\mathcal{R} $ does not have an independent basis of quasi-identities to the class $\mathcal{N}_{2}$ of $2$-nilpotent groups and has an $\omega $-independent basis of quasi-identities to $\mathcal{N}_{2}$. The intersection of all quasivarieties in $\mathcal{R}$ has an independent basis of quasi-identities to $\mathcal{N}_{2}$. The set of such sets $\mathcal{R}$ is continual.
Keywords: nilpotent group, quasivariety, $\omega $-independence.
@article{SEMR_2019_16_a7,
     author = {A. I. Budkin},
     title = {On the $\omega $-independence of quasivarieties of nilpotence groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {516--522},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On the $\omega $-independence of quasivarieties of nilpotence groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 516
EP  - 522
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/
LA  - ru
ID  - SEMR_2019_16_a7
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On the $\omega $-independence of quasivarieties of nilpotence groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 516-522
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/
%G ru
%F SEMR_2019_16_a7
A. I. Budkin. On the $\omega $-independence of quasivarieties of nilpotence groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 516-522. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/