On the $\omega $-independence of quasivarieties of nilpotence groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 516-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists a set $\mathcal{R}$ of quasivarieties of nilpotent groups of class two any quasivariety from $\mathcal{R} $ does not have an independent basis of quasi-identities to the class $\mathcal{N}_{2}$ of $2$-nilpotent groups and has an $\omega $-independent basis of quasi-identities to $\mathcal{N}_{2}$. The intersection of all quasivarieties in $\mathcal{R}$ has an independent basis of quasi-identities to $\mathcal{N}_{2}$. The set of such sets $\mathcal{R}$ is continual.
Keywords: nilpotent group, quasivariety, $\omega $-independence.
@article{SEMR_2019_16_a7,
     author = {A. I. Budkin},
     title = {On the $\omega $-independence of quasivarieties of nilpotence groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {516--522},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On the $\omega $-independence of quasivarieties of nilpotence groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 516
EP  - 522
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/
LA  - ru
ID  - SEMR_2019_16_a7
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On the $\omega $-independence of quasivarieties of nilpotence groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 516-522
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/
%G ru
%F SEMR_2019_16_a7
A. I. Budkin. On the $\omega $-independence of quasivarieties of nilpotence groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 516-522. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a7/

[1] A. I. Budkin, “Independent axiomatizability of quasivarieties of groups”, Mathematical Notes, 31:6 (1982), 413–417 | DOI | MR | Zbl

[2] A. I. Budkin, “Independent axiomatizability of quasivarieties of generalized solvable groups”, Algebra and Logic, 25:3 (1986), 155–166 | DOI | MR | Zbl

[3] A. I. Budkin, “Independent axiomatizability of quasi-varieties of soluble groups”, Algebra and Logic, 30:2 (1991), 81–100 | DOI | MR | Zbl

[4] A. I. Budkin, “On the independent axiomatizability of quasimanifolds of universal algebras”, Mathematical Notes, 56:4 (1994), 1008–1014 | DOI | MR | Zbl

[5] N. Ya. Medvedev, “Quasivarieties of Z-groups and groups”, Siberian Mathematical Journal, 26:5 (1985), 717–723 | DOI | MR | Zbl

[6] A. I. Budkin, “Quasivarieties of groups having no coverings”, Mathematical Notes, 37:5 (1985), 333–337 | DOI | MR | Zbl

[7] A. N. Fedorov, “Quasi-identities of a free 2-nilpotent group”, Mathematical Notes, 40:5 (1986), 837–841 | DOI | MR | Zbl

[8] A. N. Fedorov, “Subquasivarieties of nilpotent minimal non-Abelian group varieties”, Siberian Mathematical Journal, 21:6 (1980), 840–850 | DOI | MR

[9] V. I. Tumanov, “Finite lattices having no independent basis of quasiidentities”, Mathematical Notes, 36:5 (1984), 811–815 | DOI | MR | Zbl

[10] V. K. Kartashov, “Quasivarieties of unars”, Math. Notes, 27:1 (1980), 5–12 | DOI | MR | Zbl

[11] S. V. Sizyi, “Quasivarieties of graphs”, Siberian Mathematical Journal, 35:4 (1994), 783–794 | DOI | MR

[12] A. V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras. II”, Siberian Electronic Mathematical Reports, 13 (2016), 388–394 | MR | Zbl

[13] A. Basheyeva, A.M. Nurakunov, M.V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. III”, Siberian Electronic Mathematical Reports, 14 (2017), 252–263 | MR | Zbl

[14] A. V. Kravchenko, A. V. Yakovlev, “Quasivarieties of graphs and independent axiomatizability”, Siberian Advances in Mathematics, 20:2 (2017), 80–89 | MR | Zbl

[15] A. V. Kartashova, “Antivarieties of unars”, Algebra and Logic, 50:4 (2011), 357–364 | DOI | MR | Zbl

[16] A. O. Basheyeva, A. V. Yakovlev, “On $\omega $-independent bases for quasi-identities”, Siberian Electronic Mathematical Reports, 14 (2017), 838–847 | MR | Zbl

[17] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, 1998 | MR | Zbl

[18] V. A. Gorbunov, “Covers in lattices of quasivarieties and independent axiomatizability”, Algebra and Logic, 16:5 (1977), 340–369 | DOI | MR | Zbl

[19] A.I. Malcev, Algebraic Systems, Springer-Verlag, 1973 | MR

[20] A. I. Budkin, V. A. Gorbunov, “Quasivarieties of algebraic systems”, Algebra and Logic, 14:2 (1975), 73–84 | DOI | MR