Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a69, author = {M. P. Golubyatnikov}, title = {Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1245--1253}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/} }
TY - JOUR AU - M. P. Golubyatnikov TI - Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1245 EP - 1253 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/ LA - ru ID - SEMR_2019_16_a69 ER -
%0 Journal Article %A M. P. Golubyatnikov %T Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1245-1253 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/ %G ru %F SEMR_2019_16_a69
M. P. Golubyatnikov. Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1245-1253. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] A.A. Makhnev, M.P. Golubyatnikov, Wenbin Guo, “Inverse problems in distance-regular graphs: nets”, Comm. in Math. and Statistic, 7:1 (2019), 69–83 | DOI | MR | Zbl
[3] A.A. Makhnev, M.P. Golubyatnikov, “On automorphisms of distance-regular graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$”, Algebra, Number Theory and Math. Modelling of Dynamic Systems, Abstracts, Nalchik, 2019, 86 pp. | MR
[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[5] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl