Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1245-1253.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a distance regular graph of diameter 3 for which the graph $\Gamma_3$ is a pseudo-network. Previously, A.A. Makhnev, M.P. Golubyatnikov, Wenbin Guo found infinite series of admissible arrays of intersections of such graphs. In the case of $c_2 = 1$, we have the two-parameter series $\{nm-1,nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Possible automorphisms of such graphs were found by A.A. Makhnev, M.P. Golubyatnikov. In this paper the author found automorphism groups of distance regular graphs with intersection arrays $\{90,84,7;1,1,84\}$ ($n=13,m=7$), $\{220,216,5;1,1,216\}$ ($n=17,m=13$), $\{272,264,9;1,1,264\}$ ($n=21,m=13$). In particular, this graphs are not arc transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2019_16_a69,
     author = {M. P. Golubyatnikov},
     title = {Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1245--1253},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/}
}
TY  - JOUR
AU  - M. P. Golubyatnikov
TI  - Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1245
EP  - 1253
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/
LA  - ru
ID  - SEMR_2019_16_a69
ER  - 
%0 Journal Article
%A M. P. Golubyatnikov
%T Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1245-1253
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/
%G ru
%F SEMR_2019_16_a69
M. P. Golubyatnikov. Automorphisms of small graphs with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1245-1253. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a69/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] A.A. Makhnev, M.P. Golubyatnikov, Wenbin Guo, “Inverse problems in distance-regular graphs: nets”, Comm. in Math. and Statistic, 7:1 (2019), 69–83 | DOI | MR | Zbl

[3] A.A. Makhnev, M.P. Golubyatnikov, “On automorphisms of distance-regular graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$”, Algebra, Number Theory and Math. Modelling of Dynamic Systems, Abstracts, Nalchik, 2019, 86 pp. | MR

[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[5] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl