Mots-clés : automorphism.
@article{SEMR_2019_16_a68,
author = {A. A. Makhnev and V. V. Bitkina},
title = {On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {777--785},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a68/}
}
TY - JOUR
AU - A. A. Makhnev
AU - V. V. Bitkina
TI - On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2019
SP - 777
EP - 785
VL - 16
UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a68/
LA - ru
ID - SEMR_2019_16_a68
ER -
A. A. Makhnev; V. V. Bitkina. On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 777-785. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a68/
[1] A. Jurishich, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl
[2] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[4] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[5] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[6] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl